NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

Warszawa 2015

Projekt: wersja z dnia 4 sierpnia 2015 roku
Spis skrótów

<table>
<thead>
<tr>
<th>Skrót</th>
<th>Oznaczenie</th>
<th>Znaczenie</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGK</td>
<td>Bank Gospodarstwa Krajowego</td>
<td></td>
</tr>
<tr>
<td>Bhp</td>
<td>Bezpieczeństwo i higiiena pracy</td>
<td></td>
</tr>
<tr>
<td>B+R</td>
<td>Badania i Rozwój</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>Dwutlenek węgla</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Tlenki węgla</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>Tlenki azotu</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>Dwutlenek siarki</td>
<td></td>
</tr>
<tr>
<td>CO2/kwh</td>
<td>Ilość [w gramach] dwutlenku węgla emitowana na jednostkę energii (kilowatogodziny)</td>
<td></td>
</tr>
<tr>
<td>Gj</td>
<td>Gigadżul</td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Gigawat</td>
<td></td>
</tr>
<tr>
<td>TWh</td>
<td>Terawatogodzina</td>
<td></td>
</tr>
<tr>
<td>GUS</td>
<td>Główny Urząd Statystyczny</td>
<td></td>
</tr>
<tr>
<td>JST</td>
<td>Jednostki samorządu terytorialnego</td>
<td></td>
</tr>
<tr>
<td>kgoe</td>
<td>Kilogram oleju ekwiwalentnego</td>
<td></td>
</tr>
<tr>
<td>KE</td>
<td>Komisia Europejska</td>
<td></td>
</tr>
<tr>
<td>LCA</td>
<td>Ocena cyklu życia produktu lub organizacji</td>
<td></td>
</tr>
<tr>
<td>MtCO2e</td>
<td>Megatona ekwiwalentu dwutlenku węgla</td>
<td></td>
</tr>
<tr>
<td>MAIC</td>
<td>Minister właściwy ds. informatyzacji</td>
<td></td>
</tr>
<tr>
<td>MEN</td>
<td>Minister właściwy ds. oświaty i wychowania</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Minister właściwy ds. finansów publicznych</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>Minister właściwy ds. gospodarki</td>
<td></td>
</tr>
<tr>
<td>MIRb</td>
<td>Minister właściwy ds. budownictwa, lokalnego planowania i zagospodarowania przestrzennego oraz nieruchomości</td>
<td></td>
</tr>
<tr>
<td>MIRr</td>
<td>Minister właściwy ds. rozwoju regionalnego</td>
<td></td>
</tr>
<tr>
<td>MIRt</td>
<td>Minister właściwy ds. transportu</td>
<td></td>
</tr>
<tr>
<td>MNiSW</td>
<td>Minister właściwy ds. szkolnictwa wyższego i/lub Minister właściwy ds. nauki</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Minister właściwy ds. środowiska</td>
<td></td>
</tr>
<tr>
<td>MRiRW</td>
<td>Minister właściwy ds. rolnictwa</td>
<td></td>
</tr>
<tr>
<td>UZP</td>
<td>Urząd Zamówień Publicznych</td>
<td></td>
</tr>
</tbody>
</table>

Skróty stosowane w opisie działań – typ działania

[U] – upowszechnianie/ doradztwo
[F] – wsparcie finansowe
[T] – rozwój technologii/ badania
[L] – zmiana legislacyjna

Projekt z dnia 4 sierpnia 2015 roku
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

Spis skrótów .. 2
1. Zasadność stworzenia dokumentu ... 9
2. Proces przygotowania dokumentu oraz jego struktura .. 10
3. Zgodność z dokumentami strategicznymi .. 11
4. Diagnoza oraz SWOT .. 13
4.1. Cel i kontekst diagnozy .. 13
4.2. Uzasadnienie zastosowania analiz STEEPLE i SWOT .. 13
4.3. Uwarunkowania społeczne .. 14
4.3.1. Prognoza demograficzna Polski .. 14
4.3.2. Jakość kapitału ludzkiego .. 15
4.3.3. Poziom ubóstwa i wykluczenia społecznego ... 15
4.3.4. Świadomość społeczna dotycząca niskoemisyjnej gospodarki 16
4.3.5. Analiza SWOT uwarunkowań społecznych .. 17
4.4. Uwarunkowania technologiczne i techniczne .. 17
4.4.1. Źródła emisji gazów cieplarnianych w Polsce ... 17
4.4.2. Stan techniczny infrastruktury – perspektywa sektorowa 19
4.4.3. Analiza SWOT uwarunkowań technologicznych i technicznych 26
4.5. Uwarunkowania ekonomiczne .. 27
4.5.1. Oczekiwane tempo rozwoju polskiej i europejskiej gospodarki 28
4.5.2. Struktura produkcji w Polsce ... 29
4.5.3. kształtownie się rynku pracy w Polsce ... 29
4.5.4. Sytuacja fiskalna w Polsce ... 30
4.5.5. Poziom oszczędności i inwestycji w Polsce .. 31
4.5.6. Bilans handlowy Polski (w tym bilans handlu surowcami) 32
4.5.7. Inwestycje zagraniczne w Polsce ... 32
4.5.8. Wykorzystanie finansowania z funduszy europejskich 32
4.5.9. Nakłady na badania naukowe oraz zdolność do komercjalizacji innowacji 33
4.5.10. Zdolność wsparcia działań niskoemisyjnych ze strony sektora finansowego 34
4.5.11. Analiza SWOT uwarunkowań ekonomicznych ... 34
4.6. Uwarunkowania środowiskowe ... 35
4.6.1. Poziom emisji gazów cieplarnianych ... 35
4.6.2. Zmiany klimatyczne ... 36
4.6.3. Dylematy związane z pozyskiwaniem energii ze źródeł odnawialnych 36
4.6.4. Zasoby wodne .. 37
4.6.5. Odpady komunalne ... 38

Projekt z dnia 4 sierpnia 2015 roku
4.6.6. Ochrona przyrody i krajobrazu ... 39
4.6.7. Analiza SWOT uwarunkowań środowiskowych .. 40
4.7. Uwarunkowania polityczne .. 40
4.8. Uwarunkowania prawne .. 42
4.9. Uwarunkowania społeczne i etyczne ... 44
4.9.1. Etyka i postawy społeczne ... 45
4.9.2. Etyka w biznesie ... 46
4.9.3. Ryzyko korupcji .. 47
4.9.4. Analiza SWOT uwarunkowań społecznych i etycznych 48

5. Cel główny Narodowego Programu Rozwoju Gospodarki Niskoemisyjnej 50

6. Cel szczegółowy A: Niskoemisyjne wytwarzanie energii 53

6.1. Priorytet A.1. Modernizacja infrastruktury krajowego systemu elektroenergetycznego .. 55

6.1.1. Działanie A.1.1. Modernizacja i rozbudowa krajowego systemu elektroenergetycznego dopasowana do wymagań rozwijającego się rynku OZE ... 56
6.1.2. Działanie A.1.2. Modernizacja i rozbudowa krajowego systemu elektroenergetycznego przyczyniająca się do ograniczenia strat przesyłowych ... 57
6.1.3. Działanie A.1.3. Rozwój wysokosprawnej poligeneracji i kogeneracji 58

6.2. Priorytet A.2. Rozwój wykorzystania OZE ... 58

6.2.1. Działanie A.2.1. Rozwój energetyki prosumenckiej 60
6.2.2. Działanie A.2.2. Rozwój biogazowni .. 62
6.2.3. Działanie A.2.3. Rozwój energetyki wiatrowej na polskich obszarach morskich ... 63
6.2.4. Działanie A.2.4. Zróðnoważone wykorzystanie biomasy 64
6.2.5. Działanie A.2.5. Wykorzystanie kolektorów słonecznych do ogrzewania wody ... 66
6.2.6. Działanie A.2.6. Upowszechnienie wykorzystania pomp ciepła i gruntowych wymienników ciepła do celów grzewczych ... 68

6.3. Priorytet A.3 Upowszechnienie alternatywnych, innych niż odnawialnych, metod pozyskiwania energii 69

6.3.1. Działanie A.3.1. Upowszechnienie spalania i współspalania odpadów 71
6.3.2. Działanie A.3.2. Wzrost wykorzystania metanu na cele energetyczne 72
6.3.3. Działanie A.3.3. Efektywniejsze gospodarowanie ciepłem odpadowym 73
6.3.4. Działanie A.3.4. Zwiększenie stopnia wykorzystania paliw alternatywnych 74

7. Cel szczegółowy B: Poprawa efektywności gospodarowania surowcami i materiałami, w tym odpadami 75

7.1. Priorytet B.1 Promocja optymalnego wykorzystywania surowców 77

7.1.1. Działanie B.1.1. Doskonalenie technologii pozyskiwania i wstępnej obróbki surowców 77
7.1.2. Działanie B.1.2. Poprawa efektywności wykorzystywania surowców 79
8. Cel szczegółowy C: Rozwój zrównoważonej produkcji (przemysł, budownictwo, rolnictwo)83

8.1. Priorytet C.1 Tworzenie przyjaznych warunków dla rozwoju niskoemisyjnej gospodarki w sektorze przemysłu ...85
 8.1.1. Działanie C.1.1. Rozwój produktów niskoemisyjnych..87
 8.1.2. Działanie C.1.2. Tworzenie kadr dla gospodarki niskoemisyjnej89
8.2. Priorytet C.2 Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych ..91
 8.2.1. Działanie C.2.1. Zmniejszenie emisyjności sektora cementowego91
 8.2.2. Działanie C.2.2. Obniżenie emisyjności przemysłu chemicznego92
 8.2.3. Działanie C.2.3. Obniżenie emisyjności przemysłu hutniczego93
8.3. Priorytet C.3 Poprawa standardu energetycznego istniejących budynków98
 8.3.1. Działanie C.3.1. Kontynuacja procesu termomodernizacji na nowych zasadach...98
 8.3.2. Działanie C.3.2. Inne działania zmniejszające zużycie energii w istniejących budynkach102
8.4. Priorytet C.4 Poprawa standardu energetycznego nowobudowanych budynków102
 8.4.1. Działanie C.4.1. Poprawa warunków horyzontalnych dla rozwoju budynków o niskim zużyciu energii 103
 8.4.2. Działanie C.4.2. Przegląd warunków technicznych stawianych nowym budynkom ..104
8.5. Priorytet C.5 Rozwój zrównoważonej produkcji w rolnictwie107
 8.5.1. Działanie C.5.1. Zrównoważone zarządzanie gospodarstwem rolnym.................108
 8.5.2. Działanie C.5.2. Wdrażanie nowoczesnych metod upraw110
 8.5.3. Działanie C.5.3. Wdrażanie nowoczesnych metod chowu zwierząt112

9. Cel szczegółowy D: Transformacja niskoemisyjna w dystrybucji i mobilności113
9.1. Priorytet D.1 Zwiększenie efektywności wybranych elementów łańcucha logistycznego116
 9.1.1. Działanie D.1.1. Wprowadzenie regulacji prawno-finansowych wpływających na integrację poszczególnych gałęzi transportu towarowego116
 9.1.2. Działanie D.1.2. Rozwój transportu intermodalnego ..117
9.2. Priorytet D.2 Transformacja niskoemisyjna w sektorze handlu118
 9.2.1. Działanie D.2.1. Rozwój krótkich łańcuchów dostaw oraz rynków lokalnych118
 9.2.2. Działanie D.2.2. Tworzenie warunków sprzyjających promocji produktów ekologicznych119
9.3. Priorytet D.3 Modernizacja pojazdów oraz infrastruktury w celu upowszechnienia niskoemisyjnych form transportu ..120
 9.3.1. Działanie D.3.1. Modernizacja i rozwój niskoemisyjnej infrastruktury transportowej121
 9.3.2. Działanie D.3.2. Modernizacja i rozwój niskoemisyjnych środków transportu123
9.4. Priorytet D.4 Poprawa efektywności zarządzania transportem oraz wspieranie rozwoju transportu publicznego

9.4.1. Działanie D.4.1. Rozwój niskoemisyjnych systemów zarządzania ruchem

9.4.2. Działanie D.4.2. Rozwój niskoemisyjnego transportu publicznego (zarządzanie transportem)

9.5. Priorytet D.5 Rozwój i zastosowanie niskoemisyjnych palów w transporcie oraz magazynowania energii w środkach transportu

9.5.1. Działanie D.5.1. Wspieranie zastosowania palów metanowych, biopaliw i biogazu

9.5.2. Działanie D.5.2. Efektywne magazynowanie energii elektrycznej w pojazdach

10. Cel szczegółowy E: Promocja wzorców zrównoważonej konsumpcji

10.1. Priorytet E.1 Promocja wzorców zrównoważonej konsumpcji w edukacji

10.1.1. Działanie E.1.1. Większe uwzględnienie zasad zrównoważonego rozwoju w edukacji

10.1.2. Działanie E.1.2. Promocja edukacji na odległość oraz wykorzystania Internetu w procesach edukacyjnych

10.2. Priorytet E.2 Wspieranie dostępności oraz wiarygodności informacji na temat wpływu konsumpcji poszczególnych produktów i usług na emisyjność gospodarki

10.2.1. Działanie E.2.1. Gromadzenie przez sektor prywatny informacji na temat emisyjności produktów w całym cyklu życia

10.2.2. Działanie E.2.2. Upowszechnienie metod oceny cyklu życia w komunikacji biznesowej oraz konsumenckiej

10.2.3. Działanie E.2.3. Dostosowanie systemu sprawozdawczości oraz statystyki publicznej do potrzeb związanych z oceną emisyjności głównych grup produktów i organizacji

10.2.4. Działanie E.2.4. Rozwój jednolitego systemu standardów oraz testów konsumenckich w zakresie oceny emisyjności produktów

10.3. Priorytet E.3 Promocja wzorców zrównoważonej konsumpcji w gospodarstwach domowych

10.3.1. Działanie E.3.1. Zmiana prostych nawykców konsumentów w obrębie gospodarstwa domowego sprzyjająca oszczędności energii

10.3.2. Działanie E.3.2. Promocja zrównoważonego gospodarowania odpadami w gospodarstwie domowym

10.3.3. Działanie E.3.3. Przeciwdziałanie mamotrawstwu żywności

10.3.4. Działanie E.3.4. Kształtowanie zachowań społecznych w dziedzinie zrównoważonego transportu

10.4. Priorytet E.4 Promocja transformacji niskoemisyjnej w sektorze publicznym

10.4.1. Działanie E.4.1. Promocja oszczędności energii w sektorze publicznym

10.4.2. Działanie E.4.2. Upowszechnienie zasad zielonych zamówień publicznych

10.4.3. Działanie E.4.3. Uwzględnienie potrzeb transformacji niskoemisyjnej w gospodarce leśnej oraz zarządzaniu obszarami zieleni miejskiej
10.4.4. Działanie E.4.4. Przegląd prawa zagospodarowania przestrzennego pod kątem potrzeb niskoemisyjnej gospodarki

11. Opis systemu wdrażania

11.1. Instytucje zaangażowane we wdrażanie programu

11.2. Ramy finansowe

11.3. Wskaźniki

11.4. Symulacje makroekonomiczne efektów realizacji programu

12. Wyniki Strategicznej oceny oddziaływania na środowisko

13. Wyniki ewaluacji ex-ante

 Projekt z dnia 4 sierpnia 2015 roku
I

UZASADNIENIE POWSTANIA DOKUMENTU ORAZ DIAGNOZA
1. Zasadność stworzenia dokumentu

Polska gospodarka charakteryzuje się dominacją usług prostych oraz wytwarzaniem produktów nisko i średnio przetworzonych, a także faktem, że przewaga konkurencyjna usług i towarów wynika z niższych kosztów pracy w porównaniu do lepiej rozwiniętych państw UE. Podczas gdy polegający na tych cechach model rozwoju dobrze sprawdził się w ostatnich dwóch dekadach, obecnie staje się on coraz mniej skuteczny. Wzrost wynagrodzeń oraz stopniowa penetracja unijnego rynku przez towary z krajów pozaunijnych, gdzie koszty pracy są nieporównywalnie niższe niż w Polsce, prowadzi do konieczności zidentyfikowania nowych zrozumiałości konkurencyjnej.

Narodowy Program Rozwoju Gospodarki Niskoemisyjnej (NPRGN) jest próbą wzmocnienia polskiej drogi do niskoemisyjnej gospodarki. Ze względu na złożony charakter tego procesu, w opracowanie dokumentu zaangażowane było szeroko grono interesariuszy – w tym przedstawiciele środowisk akademickich, instytutów badawczych, biznesu oraz organizacji pozarządowych. Daje to nadzieję, że zaproponowane działania przyniosą korzyści zarówno w obszarze gospodarczym, jak i środowiskowym oraz społecznym. Trzeba mieć również świadomość, że gospodarka nie jest statycznym tworem i każdy proces jej przekształcania musi być elastyczny.
2. Proces przygotowania dokumentu oraz jego struktura

W celu zidentyfikowania najważniejszych obszarów, mających potencjał w zakresie transformacji niskoemisyjnej, przygotowanie NPRGN oparto o podejście bottom-up. Oznacza to, że zidentyfikowanie celów i priorytetów było oparte o wyniki szczegółowych analiz materiałów przekazanych przez ekspertów reprezentujących różne sfery aktywności gospodarczej (11 sektorów). Ze względu na pracochłonność przyjętego podejścia, jego realizacja nie byłaby możliwa bez zaangażowania w proces licznych grup osób zrzeszonych m.in. w Społecznej Radzie Rozwoju Gospodarki Niskoemisyjnej.

 Wynikiem pierwszego etapu prac było zidentyfikowanie blisko 400 tzw. obszarów, które opisywały sfery ważne z punktu widzenia transformacji niskoemisyjnej w Polsce. Następnie obszary zostały poddane priorytetyzacji i grupowaniu. Podstawowym czynnikiem, który decydował o ocenie danego obszaru był jego wpływ na rozwój gospodarczy, a w drugiej kolejności na redukcję emisji w Polsce. Do etapu grupowania zostały zakwalifikowane wyłącznie te obszary, które były pozytywnie ocenione pod kątem obu kryteriów. Etap priorytetyzacji i grupowania obszarów wykonany został we współpracy z ekspertami. Do etapu grupowania zakwalifikowanych zostało 90% wszystkich obszarów, wykonawca zaproponował również 21 nowych obszarów, które zostały pozytywnie ocenione przez autorów NPRGN. Pogrupowane obszary zostały przez Ministerstwo Gospodarki zagregowane do poziomu priorytetów, a priorytety powiązane z cełami szczegółowymi Programu. W ten sposób podejście bottom-up, kluczowe na poziomie analizy i identyfikacji obszarów, zostało uzupełnione elementami podejścia top-down, co zwiększyło przejrzystość Programu i umożliwiło zaproponowanie instrumentów wsparcia.

W trakcie opracowywania dokumentu Ministerstwo Gospodarki korzystało z zyczliwego wsparcia ekspertów zgromadzonych w Społecznej Radzie Rozwoju Gospodarki Niskoemisyjnej, jak również z zewnętrznych analiz zlecanych ze środków grantu Banku Światowego (BS). W ramach współpracy z BŚ podpisana została umowa na priorytetyzację i grupowanie obszarów, wykonana Diagnoza na potrzeby NPRGN, a także przeprowadzona analiza stanu technicznego gospodarki oraz sporządzona symulacja makroekonomicznych efektów realizacji Programu. Dzięki współpracy z BŚ możliwe jest również przeprowadzenie ewaluacji ex-ante NPRGN.

Dokument składa się z kilku funkcjonalnych części.

Zadaniem pierwszej z nich jest przedstawienie ogólnych informacji dotyczących powstania NPRGN oraz ogólnego stanu polskiej gospodarki w kontekście transformacji niskoemisyjnej (diagnoza).

W drugiej części zaprezentowany jest cel główny, cele szczegółowe, priorytety i działania NPRGN – przedstawiające z jednej strony szczegółowe uzasadnienie konieczności interwencji publicznej (będąc uzupełnieniem diagnozy) z drugiej wskazujące na konkretne działania – rekomendowane do podjęcia zarówno przez sektor publiczny, jak również przedstawicieli biznesu oraz organizacji pozarządowych.

W trzeciej części opisano system wdrażania, monitoringu (wraz ze wskaźnikami) oraz symulacje wpływu NPRGN na wzrost gospodarczy, poziom zatrudnienia oraz emisyjność gospodarki.

W ostatniej części przedstawiono wyniki ewaluacji ex-ante oraz strategicznej oceny odziaływania na środowisko oraz ich wpływu na treść NPRGN.
3. Zgodność z dokumentami strategicznymi

Cel NPRGN wpisuje się w paradygmat zrównoważonego rozwoju oraz stanowi uszczegółowienie celów formułowanych w dokumentach strategicznych zarówno na poziomie UE, jak również Polski.

Rozwój niskoemisyjnej, konkurencyjnej gospodarki jest zbliżony z założeniami Strategii na rzecz inteligentnego i zrównoważonego rozwoju sprzyjającemu włączeniu społecznemu Europa 2020, której celem jest np. budowa bardziej energooszczędnej gospodarki, efektywne korzystające z dostępnych zasobów. NPRGN wpisuje się także w postulaty dotyczące reindustrializacji gospodarki przy jednoczesnym uwzględnieniu konieczności ochrony środowiska oraz przeciwdziałania skutkom zmian klimatu.

Oszary interwencji NPRGN są zgodne z działaniami wymienionymi w Strategii Rozwoju Kraju do 2020 roku, szczególnie w zakresie celów strategicznych dotyczących: wzrostu wydajności gospodarki; wzrostu innowacyjności gospodarki; rozwoju kapitału ludzkiego; zwiększenia wykorzystania technologii cyfrowych; bezpieczeństwa energetycznego i środowiska oraz zwiększenia efektywności transportu. Działania te zmierzają do wspierania przedsięwzięć służących podnoszeniu wydajności gospodarki, wdrażania zaawansowanych technologii, podnoszenia kwalifikacji zatrudnionych oraz zmniejszenia presji wywieranych przez gospodarkę na środowisko.

Działania zidentyfikowane w ramach NPRGN łączą się szczególnie z priorytetami określonymi w następujących strategiach zintegrowanych:

1. Strategii Innowacyjności i Efektywności Gospodarki (Cel 3: Wzrost efektywności wykorzystania zasobów naturalnych i surowców);
2. Strategii Rozwoju Kapitału Ludzkiego (Cel 5: Podniesienie poziomu kompetencji oraz kwalifikacji obywateli);
3. Strategii Rozwoju Transportu do 2020 roku (Cel 4: Ograniczenie negatywnego wpływu transportu na środowisko);
4. Strategii Bezpieczeństwo Energetyczne i Środowisko (Cel 1: Zrównoważone Gospodarowanie Zasobami Środowiska; Cel 2: Zapewnienie Gospodarce Krajowej Bezpiecznego i Konkurencyjnego Zaopatrzenia w Energię, Cel 3: Poprawa stanu środowiska);
5. Krajowej Strategii Rozwoju Regionalnego 2010-2020, Regiony, Miasta, Obszary Wiejskie (Cel 1: Wspomaganie wzrostu konkurencyjności regionów);

Bardziej szczegółowe informacje dotyczące zgodności NPRGN z krajowymi dokumentami strategicznymi zawiera poniższa tabela. Poziom zgodności oceniono za pomocą czterostopniowej skali:

-1 NPRGN realizuje działania sprzeczne z celami dokumentu strategicznego,
0 brak zbieżności z NPRGN
1 NPRGN w części realizuje postulaty priorytetu zawartego w danej strategii,
2 NPRGN w istotny sposób przyczynia się do realizacji danego priorytetu strategii.
<table>
<thead>
<tr>
<th>Nazwa Strategii</th>
<th>Cel szczegółowy</th>
<th>Narodowy Program Rozwoju Gospodarki Niskoemisyjnej</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Energia</td>
</tr>
<tr>
<td>Strategia Innowacyjności i Efektywności Gospodarki</td>
<td>Cel 1: Dostosowanie otoczenia regulacyjnego i finansowego do potrzeb innowacyjnej i efektywnej gospodarki</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 2: Stymulowanie innowacyjności poprzez wzrost efektywności wiedzy i pracy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 3: Wzrost efektywności wykorzystania zasobów naturalnych i surowców</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cel 4: Wzrost unimiedzynarodowienia polskiej gospodarki</td>
<td>1</td>
</tr>
<tr>
<td>Strategia Rozwoju Kapitału Ludzkiego do 2020 roku</td>
<td>Cel 1: Wzrost zatrudnienia</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cel 2: Wydłużenie okresu aktywności zawodowej i zapewnienie lepszej jakości funkcjonowania osiób starszych</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cel 3: Poprawa sytuacji osób i grup zagrożonych wykluczeniem społecznym</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cel 4: Poprawa zdrowia obywateli oraz efektywność systemu opieki zdrowotnej</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 5: Podniesienie poziomu kompetencji oraz kwalifikacji obywateli</td>
<td>1</td>
</tr>
<tr>
<td>Strategia Rozwoju Transportu do 2020 roku</td>
<td>Cel 1: Stworzenie nowoczesnej, spójnej sieci infrastruktury transportowej</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 2: Poprawa sposobu organizacji i zarządzania systemem transportowym</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cel 3: Bezpieczeństwo i niezawodność</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cel 4: Ograniczanie negatywnego wpływu transportu na środowisko</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 5: Zbudowanie racjonalnego modelu finansowania inwestycji infrastrukturalnych</td>
<td>0</td>
</tr>
<tr>
<td>Strategia Bezpieczeństwa Energetycznego i Środowiskowego</td>
<td>Cel 1: Zróżnowione gospodarowanie zasobami środowiska</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cel 2: Zapewnienie gospodarce krajowej bezpiecznego i konkurencyjnego zaopatrzenia w energię</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cel 3: Poprawa stanu środowiska</td>
<td>2</td>
</tr>
</tbody>
</table>
4. Diagnoza oraz SWOT

4.1. Cel i kontekst diagnozy

Nadrzędnym celem Diagnozy jest nakreślenie kontekstu społeczno-gospodarczego warunkującego wdrożenie NPRGN. Diagnoza została opracowana z wykorzystaniem dwóch metodyk: STEEPLE i SWOT.

4.2. Uzasadnienie zastosowania analiz STEEPLE i SWOT

STEEPLE jest narzędziem zarządzania strategicznego, które pomaga badać otoczenie zewnętrzne, w którym działa dany podmiot. W jej ramach czynniki kształtujące to otoczenie dzielone są na społeczno-kulturowe (S – social factors), technologiczne (T – technological), ekonomiczne (E – economic), środowiskowe (E – environmental), polityczne (P – political), prawne (L – legal) i etyczne (E – ethical).

Zgodnie z metodyką SWOT rozpatrywane uwarunkowania w ramach obszarów STEEPLE zostały poszeregowane na cztery grupy:

- **Mocne strony** (S – Strengths): wszystko to, co stanowi atut, przewagę, zaletę analizowanego czynnika w kontekście realizacji NPRGN.
- **Słabe strony** (W – Weaknesses): słabości, bariery i wady analizowanego czynnika w kontekście realizacji NPRGN.
- **Szanse** (O – Opportunities): wszystko to, co stwarza dla analizowanego czynnika możliwość korzystnej zmiany w kontekście wdrażania NPRGN.
Zagrożenia (T – Threats): niebezpieczeństwo wystąpienia niekorzystnej zmiany w kontekście realizacji NPRGN.

W efekcie połączenia obu metod najpierw wyłoniono najważniejsze czynniki wpływające na sukces programu, a następnie w ramach tych czynników określono mocne i słabe strony Polski, a także szanse i zagrożenia dla osiągania celów redukcyjnych. Analizy STEEPLE i SWOT zostały przygotowane w procesie partycypacyjnym z udziałem przedstawicieli administracji publicznej.

4.3. Uwarunkowania społeczne

Realizacja NPRGN będzie wiązała się ze zmianami strukturalnymi w polskiej gospodarce, które będą mieć wpływ na skalę kosztów społecznych całego przedsięwzięcia. Wśród ważnych czynników sukcesu NPRGN znalazły się:

- Perspektywy demograficzne Polski oraz jakość kapitału ludzkiego, które wpływają na elastyczność polskiego rynku pracy, a w konsekwencji na zdolność do przeprowadzenia procesów restrukturyzacyjnych.
- Poziom dochodów gospodarstw domowych oraz skala zagrożenia ubóstwem, które decydują o zdolnościach adaptacyjnych polskiego społeczeństwa do przeprowadzenia transformacji niskoemisyjnej.
- Świadomość społeczna dotycząca ekologii i gospodarki niskoemisyjnej, od których zależeć będzie poparcie społeczne dla reform realizowanych w ramach NPRGN.

4.3.1. Prognoza demograficzna Polski

Polska w roku 2014 była zaliczana do krajów młodych demograficznie. Obserwowane są jednak trendy, które istotnie zmienią tę sytuację w perspektywie najbliższych kilku dziesięcioleci. Do najważniejszych z nich zaliczyć można: zwiększanie się długości życia; niską dzietność kobiet, ujemne saldo migracji. W perspektywie długookresowej można oczekiwać spadku liczby ludności, a także zmniejszenia udziału w społeczeństwie osób w wieku produkcyjnym. Wg prognozy rozwoju zaludnienia na lata 2014-2050 liczba mieszkańców Polski zmniejszy się do około 34 mln w 2050 roku. Osoby w wieku 65 lat i więcej będą stanowić ponad 1/3 populacji (wzrost o 5,4 mln w porównaniu do 2013 roku). Zwiększenie udziału osób w wieku emerytalnym przy jednoczesnym spadku liczby osób pracujących oznaczać będzie rosnącą presję na finanse publiczne, co z kolei może doprowadzić do zmniejszenia konkurencyjności polskiej gospodarki i oслабienia jej zdolności do realizacji NPRGN. Dodatkowo, zgodnie z prognozami GUS aż 98% prognozowanego spadku ludności dotyczy miast, co będzie mieć istotny wpływ na kierunki rozwoju oraz strukturę przestrzenną kraju.
4.3.2. Jakość kapitału ludzkiego

W społeczeństwie polskim od wielu lat obserwowany jest spadek udziału osób z wykształceniem gimnazjalnym oraz średnim, rośnie natomiast odsetek osób z wykształceniem średnim zawodowym oraz wyższym. Jeszcze w roku 2000 ludność z wykształceniem średnim zawodowym i wyższym w całości populacji w wieku produkcyjnym stanowiła wg Eurostatu 73,5% populacji, podczas gdy w roku 2013 – już 83,7%. Korzystnym zjawiskiem jest wysoki poziom uczestnictwa młodych osób w edukacji. W 2012 r. w Polsce uczyło się aż 71,5% osób w wieku 15-24 lat (UE 61,5%). Mniej optymistycznie kształtują się wskaźniki uczestnictwa osób dorosłych w tzw. edukacji ustawicznej. Według danych Eurostat, korzystanie z jakichkolwiek form podnoszenia wiedzy deklarowało tylko 4,4% osób w wieku 25-64 lata (UE 10,8%). Brak aktywnego uczestnictwa dorosłych w edukacji ustawicznej może negatywnie wpłynąć na koszty społeczne realizacji NPRGN. Wiąże się to z niską mobilnością zawodową ludności, czyli zdolnością do zmiany pracy i/lub zawodu.

Kolejnym wyzwaniem jest bardziej elastyczne dopasowanie oferty edukacyjnej wyższych uczelni do potrzeb rynku pracy. W rezultacie, co dziewiąty bezrobotny jest osobą z wyższym wykształceniem. Jednym z czynników mogących wpływać na taki stan rzeczy jest stosunkowo niska liczba absolwentów studiów matematyczno-przyrodniczych oraz inżynieryjnych. W Polsce w 2012 r., według danych Eurostatu, jedynie 16,9% studentów ukończyło kierunki ścisłe. Dla porównania w Niemczech – 27,3%, w Czechach – 20,1%, a w Turcji – 22,3%.

4.3.3. Poziom ubóstwa i wykluczenia społecznego

Proces konwergencji państw członkowskich UE dotyczy nie tylko poziomu rozwoju gospodarczego, ale także materialnego poziomu życia mieszkańców. Według danych Eurostatu (badania EU SILC) mediana dochodów na osobę w Polsce wzrosła w latach 2005-2012 z 2,1 do 5,6 tys. euro rocznie (rysunek 2). Oznacza to, że dochody przeciętnego mieszkańca zwiększyły się w tym czasie z 20% do 33% średniej europejskiej.

1 Badanie EU SILC (The European Union Statistics on Income and Living Conditions) jest narzędziem statystycznym stosowanym w większości krajów UE, którego celem jest zbieranie porównywalnych danych dotyczących dochodów i warunków życia ludności UE. W Polsce EU SILC realizowany jest od 2005 roku.
W tym samym czasie istotnie spadł poziom nierówności społecznej oraz zagrożenie ubóstwem. Statystyki Eurostatu pokazują, że w 2005 r. współczynnik nierówności dochodowych Giniego dla Polski wynosił 35,6% (EU 30,9%) natomiast w roku 2012 już 30,9% (30,6% EU). Jednocześnie odsetek osób zagrożonych ubóstwem spadł z 45% do 27%, przy stabilnej średniej dla UE wynoszącej 25%.

Mimo pozytywnych zmian, dochody gospodarstw domowych w Polsce w ujęciu bezwzględnym wciąż pozostają na znacznie niższym poziomie niż średnia dla UE. Fakt ten ma istotne znaczenie dla budowy gospodarki niskoemisyjnej oraz kosztów możliwych do poniesienia przez polskie gospodarstwa domowe.

Według danych Eurostatu w roku 2012 wydatki przeciętnego gospodarstwa domowego w Polsce na energię elektryczną, gaz i inne paliwa wynosiły średnio 500 EUR rocznie na osobę, co stanowiło 9% całkowitych wydatków konsumpcyjnych. Przeciętne gospodarstwo domowe w UE wydawało na ten cel 700 EUR, co jednak stanowiło jedynie 4,5% domowego budżetu. Wysoki udział energii w łącznych wydatkach oznacza, że polskie gospodarstwa domowe będą miały niewielką tolerancję dla ewentualnych podwyżek cen energii. Wobec tego wdrażanie NPRGN powinno opierać się na zasadzie minimalnego obciążenia gospodarstw domowych.

4.3.4. Świadomość społeczna dotycząca niskoemisyjnej gospodarki

Deklarowana świadomość ekologiczna Polaków jest stosunkowo wysoka. Według badania Instytutu na Rzecz Ekorozwoju z roku 2011 80% Polaków uważa, że obecnie mamy do czynienia ze zmianami klimatu, 86% – że zasoby naturalne uszczuplają się, a 84% – że człowiek poprzez swoją działalność wpływa na stan tych zasobów.

2 Wskaźnik Giniego obrazuje nierówność dochodową społeczeństwa. Przyjmuje wartości od 0 do 1, często jest więc wyrażany w procentach. Wskaźnik równy zero oznacza pełną równość dochodów.
Tylko 10% respondentów nie widziało konieczności redukcji emisji gazów cieplarnianych. Wśród tych, którzy taką konieczność dostrzegali 52% powoływało się na potrzebę ochrony środowiska. Należy jednak przypomnieć, że 56% ankietowanych podejmowało działania pro-ekologiczne kierując się przede wszystkim rachunkiem ekonomicznym, a nie analizą własnego wpływu na środowisko. Badania Ministerstwa Środowiska wskazują, że większość Polaków podejmuje działania mające na celu zmniejszenie zużycia energii w gospodarstwach. Z tego samego raportu Ministerstwa Środowiska wynika, że 85% respondentów popiera finansowanie z budżetu energii odnawialnej, 60% – gazowej i 45% – węglowej.

4.3.5. Analiza SWOT uwarunkowań społecznych

<table>
<thead>
<tr>
<th>Silne strony</th>
<th>Słabe strony</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wciąż relatywnie duży udział osób w wieku przedprodukcyjnym i produkcyjnym w populacji.</td>
<td>• Niekorzystne zmiany demograficzne.</td>
</tr>
<tr>
<td>• Znaczna liczba młodych wykształconych pracowników.</td>
<td>• Relatywnie wysoki poziom ubóstwa (wobec średniej UE).</td>
</tr>
<tr>
<td></td>
<td>• Niski poziom uczestnictwa w nauczaniu ustawicznym.</td>
</tr>
<tr>
<td></td>
<td>• Niewielka popularność zawodów technicznych wśród kształcących się.</td>
</tr>
<tr>
<td></td>
<td>• Relatywnie duże (w porównaniu do średniej UE) różnictowanie dochodów ludności.</td>
</tr>
<tr>
<td></td>
<td>• Niska gotowość do działań proekologicznych w społeczeństwie pomimo wysokiej deklarowanej świadomości.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Szanse</th>
<th>Zagrożenia</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nowe miejsca pracy dzięki rozwojowi zielonej gospodarki.</td>
<td>• Wzrost zagrożenia ubóstwem i wykluczeniem energetycznym.</td>
</tr>
<tr>
<td>• Wzrost świadomości ekologicznej.</td>
<td></td>
</tr>
</tbody>
</table>

4.4. Uwarunkowania technologiczne i techniczne

Wymiar technologiczny i techniczny jest kluczowy dla rozwoju gospodarki niskoemisyjnej w Polsce, ponieważ wyznacza on istotną część rzeczywistych możliwości obniżenia emisyjności oraz zasobochłonności procesów gospodarczych. Analiza obecnego stanu technicznego infrastruktury i perspektyw jej rozwoju pozwala oszacować potencjał redukcji emisji. W niniejszym rozdziale przedstawione zostały uwarunkowania techniczne i technologiczne wpływające na realizację NPRGN, w szczególności obecny stan infrastruktury technicznej i perspektywy jej modernizacji, przekładające się na potencjał obniżenia emisji w Polsce.

4.4.1. Źródła emisji gazów cieplarnianych w Polsce

Analiza struktury gazów cieplarnianych emitowanych w Polsce wskazuje na dominującą rolę emisji związanych ze zużyciem paliw kopalnych w gospodarce (emisje ze spalania paliw oraz emisje lotne). Pozostałe źródła emisji to działalność przemysłowa (np. produkcja cementu), gospodarstwa rolne oraz odpady (głównie metan).
Rysunek 3 Źródła emisji gazów cieplarnianych w Polsce w 2011 roku

Źródło: opracowanie własne WISE na podstawie danych KOBiZE

Na podstawie danych o źródłach emisji w Polsce wyróżniono sześć głównych obszarów analizy sektorowej:

- **Energetyka.** Obszar ten obejmuje spalanie paliw kopalnych w elektrowniach, elektrociepłowniach oraz ciepłowniach miejskich. Analiza w ramach obszaru obejmuje technologie produkcji energii elektrycznej oraz ciepła, natomiast kwestia efektywności energetycznej została przeanalizowana w obszarach obejmujących odbiorców produkcji energii zawodowej (głównie budynki oraz przemysł).

- **Budynki.** Obszar ten obejmuje emisje bezpośrednio ze spalania paliw oraz pośrednie ze zużycia energii elektrycznej i ciepła sieciowego w budynkach mieszkalnych oraz niemieszkalnych.

- **Transport.** Obszar ten obejmuje wykorzystanie paliw kopalnych we wszystkich formach transportu. Dominującą rolę odgrywa w nim spalanie paliw w transporcie drogowym.

- **Przemysł.** Obszar ten obejmuje emisje ze spalania paliw w celach energetycznych w przemyśle, jak również emisje wynikające z procesów produkcyjnych.

- **Rolnictwo.** Obszar ten obejmuje zarówno emisje ze spalania paliw, jak również emisje związane z nawożeniem gruntów rolnych oraz hodowlą zwierząt.

- **Odpady.** Obszar ten obejmuje emisje powiązane z gospodarką odpadami (emisje ze składowisk odpadów, emisje ze spalania odpadów), a także gospodarką ściekową.

Nie rozpatrywano emisji lotnych, jako oddzielnego obszaru ze względu na ich bezpośrednie powiązanie ze strukturą i wielkością zużycia paliw kopalnych w energetyce, transporcie, budynkach i przemyśle.
Rysunek 4 Sześć obszarów analizy sektorowej wraz ze wskazaniem udziału w bezpośrednich emisjach GHG w Polsce w 2011 r. Źródło: opracowanie własne WISE na podstawie danych KOBiZE,

4.4.2. Stan techniczny infrastruktury – perspektywa sektorowa

Energetyka Zawodowa

Spalanie paliw kopalnych przez energetykę zawodową jest największym źródłem emisji w Polsce (ponad 40% emisji w 2011 roku). Krajowa energetyka cechuje się wysoką emisyjnością w przeliczeniu na jednostkę wyprodukowanej energii elektrycznej i ciepłej. Wynika to zarówno z dominacji węgla kamiennego i brunatnego w miksie energetycznym, jak również z niskiej sprawności bloków energetycznych (odpowiada ona jednak średniej światowej sprawności).

Wysokie uzależnienie polskiej energetyki od węgla (ponad 80% w produkcji energii elektrycznej) wynika z historycznego rozwoju branży w oparciu o duże krajowe zasoby tego surowca. Pomimo funkcjonującego od niemal dekady systemu wsparcia źródeł odnawialnych, ich udział w strukturze energetycznej kraju pozostaje niewielki. Ponadto, w obliczu ograniczonego potencjału rozwoju hydroenergetyki oraz zaniechania inwestycji w energetykę jądrową na przełomie lat 1989-1990, stabilne niskoemisyjne moce wytwórcze stanowią margines polskiego systemu energetycznego. Jednocześnie rozwój energetyki gazowej, uznanej za bardziej ekologiczną niż węglową, jest hamowany przez wysokie ceny surowca oraz niepewność związaną z ciągłością i bezpieczeństwem dostaw. Niemniej jednak dla mniejszych instalacji w ciepłownictwie dostosowanie się do nowych norm poprzez zamianę paliwa z węgla na gaz może okazać się mniej kosztowne niż inwestycje w najmniej emisyjne technologie oparte na węglu.

W ciągu kolejnych trzech dekad niezbędna będzie niemal kompletna wymiana infrastruktury produkcyjnej w polskim sektorze energetycznym. Stwarza to możliwości znaczącej poprawy efektywności wykorzystania paliw oraz zwiększenia udziału niskoemisyjnych technologii.
Rysunek 5 Produkcja energii elektrycznej wg źródła energii pierwotnej, 2012 r.
Źródło: opracowanie własne WISE na podstawie danych MAE oraz Eurostat. W nawiasach emisyjność w 2011 roku, gCO₂/kWh

Rysunek 6 Moce wytwórcze oparte na paliwach kopalnych w polskiej elektroenergetyce zawodowej wg roku budowy, GW
Źródło: opracowanie własne WISE

Budynki

Zużycie energii w budynkach oraz struktura paliw używanych w celach grzewczych są kluczowe z punktu widzenia rozwoju gospodarki niskoemisyjnej. Stan polskiej infrastruktury odbiega od średniej unijnej w obu tych obszarach.

Polska cechuje się wyjątkowo wysokim, na tle Unii Europejskiej, udziałem węgla w zużyciu finalnym energii w budynkach mieszkalnych (30%) i niemieszkalnych (10%). Ponad połowa wykorzystywanego w europejskich budynkach węgla spalana jest w Polsce. W pozostałych państwach UE ogrzewanie i ciepłą wodę w domach zapewnia przede wszystkim gaz ziemny, a także energia elektryczna. Wysoki udział węgla w zaspokajaniu potrzeb energetycznych w polskich budynkach wynika nie tylko z jego wysokiej konkurencyjności cenowej, ale też z dobrze rozwiniętej sieci dystrybucji tego paliwa. Indywidualne ogrzewanie oparte na spalaniu węgla w małych, nieposiadających filtrów instalacjach stwarza problem szkodliwych dla zdrowia
i środowiska tzw. niskich emisji. Jest on szczególnie poważny w obszarach o wysokiej koncentracji zabudowy. Ponadto w starszych budynkach funkcjonują niewieczne energetycznie piec opalane węglem sużyające relatywnie więcej paliwa niż nowsze urządzenia.

Druga charakterystyczną cechą polskiego budownictwa jest znacznie wyższy niż średnio w UE udział domów korzystających z ciepła sieciowego. Wynika to przede wszystkim z rozwoju sieci ciepłowniczych oraz budownictwa wielorodzinnego w okresie gospodarki centralnie planowanej. W ostatnich latach obserwuje się jednak spadek zainteresowania ciepłem sieciowym. Należy to wiązać z rozwojem budownictwa jednorodzinnego oraz zjawiskiem „rozlewania się” ośrodków miejskich (tzw. urban sprawl). Trendowi temu towarzyszy wzrost udziału indywidualnego ogrzewania, które jest mniej efektywne i wpływa na wzrost emisji. Podłączenie do sieci ciepłowniczych dużej liczby małych, oddalonych od ciepłowni budynków wymaga bowiem dużo większych nakładów na rozbudowę infrastruktury przesyłowej niż w przypadku dużych budowli skoncentrowanych na jednym obszarze w pobliżu źródła ciepła. Dlatego postępującej suburbanizacji towarzyszy wzrost udziału indywidualnego ogrzewania w nowych budynkach. Równocześnie niski jest udział w Polsce ogrzewania elektrycznego, które gwarantowałoby wyższe standardy ochrony środowiska przy spalaniu paliw kopalnych niż w przypadku indywidualnych instalacji w budynkach.
Ogrzewanie pomieszczeń i wody użytkowej dominuje w strukturze zużycia energii w polskich budynkach. Na ten cel przeznaczane jest niemal 85% energii w budynkach mieszkalnych i ok. 60% w budynkach niemieszkalnych. Z tego powodu kluczowym wskaźnikiem dla oceny efektywności energetycznej i emisyjności budynków jest ilość energii zużywana na ogrzanie jednego metra kwadratowego powierzchni. Porównanie wartości tego wskaźnika w Polsce ze średnią UE nie wypada dla naszego kraju pomyślnie. Co prawda wykorzystanie energii w celach grzewczych w przeliczeniu na powierzchnię wykazuje tendencję spadkową (wynika to z termomodernizacji budynków), to jednak proces ten jest hamowany przez rosnące zapotrzebowanie na ocieplenie dotąd niedogrzanych pomieszczeń. W związku z powyższym, poprawa efektywności energetycznej budynków w znacznym stopniu przekłada się na zwiększenie komfortu osób w nich przebywających, ale nie na bezwzględny spadek zużycia energii.

Rysunek 8 Mieszkania zamieszkane wg sposobu ich ogrzewania oraz okresu budowy budynku, mln mkw
źródło: opracowanie własne WISE na podstawie danych NSP

Rysunek 9 Zużycie energii na ogrzewanie pomieszczeń w Polsce i UE, kWh/mkw rocznie, z korektą klimatyczną
źródło: opracowanie własne WISE na podstawie danych Odyssee

Transport

Dominującym źródłem emisji w sektorze transportu jest spalanie paliw w transporcie drogowym (97% emisji gazów cieplarnianych w porównaniu do 94% w całej UE). Wysoka emisyjność polskiej floty samochodowej związana jest z importem używanych samochodów z krajów Europy Zachodniej. Cena stanowi wciąż jedną z głównych barier wyboru nowszych pojazdów korzystających z bardziej przyjaznych dla środowiska technologii. Dlatego też modernizacja krajowego transportu drogowego przebiega powoli, z ponad dziesięcioletnim opóźnieniem względem Europy Zachodniej. Potwierdzają to dane CEPiK dotyczące wieku pojazdów w Polsce. Jedynie co dziesiąty zarejestrowany samochód osobowy ma mniej niż 6 lat, a wiek 75% z nich przekracza dekadę.

Należy zauważyć, że średni wiek całej floty może być zawyżony ze względu na brak silnych bodźców do wyrejestrowywania pojazdów z bazy CEPiK. Figuruje w niej np. 1.9 mln samochodów osobowych mających więcej niż 30 lat. Dane o liczbie ubezpieczeń OC nie zmieniają konkluzji o niekorzystnej strukturze wiekowej floty drogowej (wiek 2/3 pojazdów przekracza 10 lat).

Rysunek 10 Zużycie paliwa w transporcie drogowym w Polsce i wybranych krajach Europy, kgoc

na mieszkańca

źródło: opracowanie własne WISE na podstawie danych Banku Światowego

Emisyjność polskiego transportu dodatkowo zwiększają zmiany w strukturze modalnej transportu, a w szczególności zmniejszenie znaczenia przewozów kolejowych. Jednocześnie, w przeliczeniu na mieszkańca, zużycie paliw w transporcie drogowym w Polsce jest nadal ok. 1/3 niższe niż średnia unijna (w 2004 r. było ono niższe o 60%). Pomimo znacznego wzrostu mobilności społeczeństwa w ostatnich dwóch dekadach i niemal dwukrotnego wzrostu zużycia paliw na osobę, wskaźnik ten nadal pozostaje o ok. 40% niższy niż w państwach Europy Zachodniej. Historyczne doświadczenia państw europejskich wskazują, że przy utrzymaniu dotychczasowych trendów wraz z dalszym rozwojem gospodarczym oraz wzrostem zamożności polskiego społeczeństwa luka ta będzie szybko zanikać, co przełoży się na wzrost zużycia paliw i zwiększenie emisji w transporcie.

Przetwórstwo przemysłowe

W przetwórstwie przemysłowym potencjał obniżania emisyjności związanej z wiekiem infrastruktury technicznej zależy od branży. W przypadku przemysłu ciężkiego i dużych zakładów
przemysłowych wiek instalacji nie ma wielkiego znaczenia, jeśli infrastruktura jest poddawana regularnej modernizacji oraz dostosowaniem do nowych regulacji. W efekcie takich zabiegów nawet kilkudziesięcioletnie zakłady mogą cechować się wskaźnikami emisyjności zbliżonymi do BAT⁴. W przemyśle chemicznym i petrochemicznych instalacje są systematycznie unowocześniane zarówno ze względu na presję regulacyjną, jak i na wysokie ceny surowców produkcyjnych. Z kolei przemysł cementowy i hutnictwo, które przeszły w poprzedniej dekadzie gruntowną modernizację, już dziś korzystają z najnowszych technologii. Dlatego dalszy potencjał obniżania emisyjności jest w nich ograniczony. Uzyskanie dalszej, znaczącej redukcji ilości gazów cieplarnianych w tych branżach wymagałoby użycia alternatywnych metod produkcji. Metody te mogą cechować wyższe koszty oraz zwiększone zapotrzebowanie na energię, która, aby uniknąć wzrostu emisji pośrednich musiałaby pochodzić ze źródeł niskoemisyjnych.

Rysunek 11 Energochłonność produkcji stali w Polsce a globalny BAT (2008)
Żródło: dane Odyssee

Mimo wysiłków poszczególnych zakładów i całych branż, wskaźniki energochłonności (ilość energii zużytej na wytworzenie jednostki wartości dodanej w gospodarce) prezentują się mniej korzystnie w porównaniu do średniej europejskiej. Wynika to jednak nie ze stanu technicznego infrastruktury w polskim przemyśle, ale z większego udziału prostych energochłonnych procesów, które cechują się niskimi marżami. Przykładowo, w branży chemicznej duże znaczenie odgrywa produkcja amoniaku czy kraking etylenu, wymagające dużych ilości energii, natomiast mniejszy jest udział zaawansowanych chemikaliów. Podobny problem występuje w innych gałęziach przemysłu. W tym przypadku kluczem do obniżenia emisyjności jest wzrost wartości dodanej produkcji, który można osiągnąć dzięki poprawie jakości, innowacyjności, wzrostowi rozpoznawalności marki i zagospodarowywaniu atrakcyjnych nisz rynkowych. Mniejsze znaczenie ma techniczne doskonalenie procesów produkcyjnych. Wyjątkiem może być poprawa

⁴ Best Available Techniques.
efektywności energetycznej w małych i średnich przedsiębiorstwach przemysłowych, cechujących się niską świadomością potencjału opłacalnych działań pro-efektywnościowych.\(^5\)

Rolnictwo

Rolnictwo wyróżnia się na tle innych sektorów zróżnicowaniem źródeł emisji gazów cieplarnianych (spalanie paliw kopalnych w celach energetycznych, emisja tlenku azotu wynikająca z nawożenia gleb, emisje z procesu fermentacji jelitowej oraz z odchodów zwierząt hodowlanych), a jednocześnie zdolnością wiązania dwutlenku węgla, a tym samym jego redukcji. Zrównoważone rolnictwo może nie tylko poprawić efektywność energetyczną i zasobową gospodarki, ale też przyczynić się do obniżenia jej wpływu netto na środowisko. Istnieją już rozwiązania umożliwiające obniżenie presji sektora na środowisko przy jednoczesnym utrzymaniu bezpieczeństwa żywnościowego (np. uprawa uproszczona, bezorkowa, efektywna gospodarka nawozami, postęp hodowlany). Pro-ekologiczne działania w rolnictwie mogą się również przyczynić do wzrostu bezpieczeństwa energetycznego (poprzez rozwój OZE) oraz rozwiązania problemów środowiskowych innych niż zmiany klimatu (np. redukcja emisji amoniaku, ochrona różnorodności biologicznej). Wdrożenie zrównoważonych praktyk rolniczych wymaga od gospodarstw rolnych podjęcia wysiłku finansowego i organizacyjnego.

Rysunek 12: Emisje gazów cieplarnianych z rolnictwa

Źródło: opracowanie własne WISE na podstawie danych KOBiZE

Istotną redukcję emisji osiągnięto w rolnictwie na początku transformacji gospodarczej dzięki racjonalizacji stosowania nawozów. Pozwoliła ona obniżyć emisję podtlenku azotu z gleb rolnych o 1/4. Postęp hodowlany oraz organizacyjny przyczynił się do zmniejszenia jednostkowej emisyjności produkcji zwierzęcej, ale na całkowity poziom emisji większy wpływ miał znaczący spadek pogłowia zwierząt gospodarskich w ostatnich dwóch dekadach. Stopniowo zmniejsza się również wydzielanie gazów cieplarnianych podczas spalania paliw w polskim rolnictwie, chociaż emisyjność miksu energetycznego sektora pozostaje wysoka ze względu na relatywnie duży udział węgla i ograniczone wykorzystanie OZE.

Projekt z dnia 4 sierpnia 2015 roku
Gospodarka odpadami

Z perspektywy emisji gazów cieplarnianych kluczowe znaczenie mają odpady komunalne, które w Polsce są w relatywnie niskim stopniu poddawane odzyskowi, a których ilość może się znacząco zwiększyć w kolejnych latach wraz ze wzrostem zamożności polskiego społeczeństwa. Obecnie w Polsce na jednego mieszkańca przypada rocznie 0,3 tony odpadów komunalnych, podczas gdy średnia unijna wynosi pół tony. Korzystniejsza sytuacja występuje w obszarze gospodarki odpadami przemysłowymi ze względu na silniejsze bodźce ekonomiczne oraz regulacyjne, chociaż i w tym przypadku istnieje potencjał poprawy, szczególnie w przypadku odpadów wydobywczych. Kluczowymi sposobami obniżenia emisyjności odpadów w Polsce jest zwiększenie udziału odzysku oraz poprawa gospodarowania istniejącymi wysypiskami. Jednocześnie, wraz ze wzrostem udziału odpadów poddawanych recyklingowi może wystąpić zjawisko konkurencji między różnymi ich zastosowaniami

4.4.3. Analiza SWOT uwarunkowań technologicznych i technicznych

<table>
<thead>
<tr>
<th>Silne strony</th>
<th>Slabe strony</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wysoka efektywność procesów produkcji najbardziej emisyjnych/energochłonnych dóbr (np. cementu, nawozów, stali) dzięki modernizacji mocy wytwórczych w poprzedniej dekadzie.</td>
<td>• Niska efektywność wykorzystania zasobów (poza tymi, które zostały wymienione w silnych stronach), wysoka emisyjność oraz przestarzała infrastruktura sieciowa w trzech obszarach odpowiadających za największą część emisji ze spalania paliw kopalnych w Polsce: energetyce, budynkach i transporcie.</td>
</tr>
<tr>
<td>• Istotny potencjał obniżenia emisyjności gospodarki dzięki standardowej modernizacji infrastruktury w energetyce, transporcie oraz budownictwie – bardziej efektywne technologie są już dobrze znane i relatywnie proste we wdrożeniu (wysokosprawne bloki węglowe - kilka jest już w budowie, efektywniejsze paliwowo pojazdy, standardowa termomodernizacja budynków, rozwój nowoczesnych systemów zarządzania infrastrukturą, np. ITS).</td>
<td>• Nieefektywne gospodarowanie odpadami komunalnymi.</td>
</tr>
<tr>
<td>• Znaczny potencjał kadrowy i laboratoryjny dla rozwijania innowacyjnych technologii energetycznych</td>
<td>• Miks energetyczny oparty na przestarzałych blokach węglowych o niskiej sprawności (energetyka zawodowa i zakładowa, np. w przemyśle chemicznym).</td>
</tr>
<tr>
<td>• Wysoka emisyjność energetyki na tle UE przekładająca się na wysokie emisje pośrednie z wykorzystania energii elektrycznej i ciepła sieciowego.</td>
<td>• Wysokość emisyjności energetyki nie jest w stanie zapewnić głębokiej redukcji emisji ze spalania paliw kopalnych w Polsce: energetyce, budynkach i transporcie.</td>
</tr>
<tr>
<td>• Ogromienie emisyjności dzięki prostej modernizacji przestarzałej infrastruktury nie jest w stanie zapewnić głębokiej redukcji emisji proponowanej w dokumentach strategicznych KE.</td>
<td>• Występowanie obszarów koncentracji nieefektywnej, przestarzałej infrastruktury budowlanej oraz transportowej (zdegradowana część tkanki miejskiej).</td>
</tr>
<tr>
<td>• Niska efektywność wykorzystania zasobów (poza tymi, które zostały wymienione w silnych stronach), wysoka emisyjność oraz przestarzała infrastruktura sieciowa w trzech obszarach odpowiadających za największą część emisji ze spalania paliw kopalnych w Polsce: energetyce, budynkach i transporcie.</td>
<td>• Niska efektywność wykorzystania zasobów (poza tymi, które zostały wymienione w silnych stronach), wysoka emisyjność oraz przestarzała infrastruktura sieciowa w trzech obszarach odpowiadających za największą część emisji ze spalania paliw kopalnych w Polsce: energetyce, budynkach i transporcie.</td>
</tr>
<tr>
<td>• Obniżona pewność zasilania w energię elektryczną i niedostateczna jakość energii dostarczanej w niektórych rejonach kraju, szczególnie na obszarach wiejskich (wysokie wskaźniki przerw w dostawach energii elektrycznej: SAIDI, SAIFI, spadki napięcia) w stosunku do innych państw Unii Europejskiej.</td>
<td>• Obniżona pewność zasilania w energię elektryczną i niedostateczna jakość energii dostarczanej w niektórych rejonach kraju, szczególnie na obszarach wiejskich (wysokie wskaźniki przerw w dostawach energii elektrycznej: SAIDI, SAIFI, spadki napięcia) w stosunku do innych państw Unii Europejskiej.</td>
</tr>
</tbody>
</table>
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

Szanse

- Globusy postęp technologiczny w energetyce odnawialnej, magazynowaniu energii, energetyce jądrowej, niskoemisyjnym transporcie (bardziej efektywne konwencjonalne silniki spalinowe, napędy alternatywne), energooszczędny budownictwie.
- Rozwój technologii obniżających emisyjność wykorzystania paliw kopalnych w polskiej gospodarce, w tym czystych technologii węglowych oraz technologii wydobycia gazu łupkowego. Możliwość wykorzystania krajowego potencjału B+R.
- Upowszechnienie się efektywnych, zrównoważonych praktyk w rolnictwie oraz rozwój technologii w obszarze biogospodarki, pozwalających na zrównoważone wykorzystanie krajowych zasobów odnawialnych.
- Wykorzystanie potencjału poprawy gospodarki odpadów (recykling, odzyskiwanie energii).
- Synergia między poszczególnymi niskoemisyjnymi technologiami wspomagana przez technologie ICT (np. smart grid i OZE + samochody elektryczne).
- Rozwój europejskiej infrastruktury energetycznej (w tym rozbudowa inter-konnektorów).
- Działania rewitalizacyjne skupione w problemowych lokalizacjach i sprzyjające znacznej poprawie efektywności oraz obniżeniu emisyjności lokalnych gospodarek.

Zagrożenia

- Bariery prawne i niewystarczająca koordynacja dużych inwestycji sieciowych zapewniających podstawę dla rozwoju niskoemisyjnego systemu energetycznego (np. rewitalizacja sieci wiejskich, poprawa struktury i przepustowości polskich sieci przesyłowych i dystrybucyjnych, smart grid, stacje ładowania pojazdów elektrycznych).
- Problemy z zapewnieniem bezpieczeństwa dostaw energii elektrycznej w razie dużego spadku udziału stabilnych źródeł energii (węgiel, gaz) i braku istotnego postępu w jej magazynowaniu.
- Konkurencja między alternatywnymi sposobami zastosowania surowców odnawialnych (np. biomasy).
- Problem dalszej redukcji emisji w przemyśle ciężkim – opcje redukcyjne albo nie osiągają odpowiedniej skali (np. alternatywne cementy, biomasa jako paliwo dla wielkich zakładów produkcyjnych), albo wymagają dużej ilości niskoemisyjnej energii (np. alternatywne procesy w chemii, hutnictwie).
- Przyjęcie zobowiązań głębokiej redukcji emisji (rzędu 80% do 2050 roku) najprawdopodobniej wiąże się z zastosowaniem CCS – technologii energochłonnej i obecnie niesprawdzonej, szczególnie na etapie składowania CO2.
- Skomplikowana ocena emisyjności w cyklu życia stwarza ryzyko, że bodźce do obniżenia emisyjności w jednym fragmencie łańcucha wartości doprowadzą do jej wzrostu w innym (np. emisyjność spalania paliwa a emisyjność jego wydobycia oraz produkcji).

4.5. Uwarunkowania ekonomiczne

W ramach części ekonomicznej nacisk położony jest na kwestie związane z:

- oczekiwanym tempem rozwoju polskiej i europejskiej gospodarki,
- strukturą produkcji w Polsce,
- kształtowaniem się rynku pracy mającym decydujące znaczenie dla sytuacji dochodowej społeczeństwa,
- sytuacją fiskalną,
- poziomem oszczędności i inwestycji, czyli determinantami potencjału rozwojowego kraju,
- bilansem handlowym (w tym w handlu surowcami energetycznymi), czyli podstawowymi miernikami konkurencyjności międzynarodowej kraju,
- inwestycjami zagranicznymi i perspektywami dalszego przyciągania inwestorów, czyli miernikiem atrakcyjności polskiego rynku,
- wykorzystaniem finansowania z funduszy europejskich, które mogą być istotnym czynnikiem stymulującym rozwój gospodarki niskoemisyjnej przynajmniej do roku 2020,
- nakładami na badania naukowe oraz zdolnością do komercjalizacji innowacji, czyli determinantami innowacyjności gospodarki oraz skłonnością do wsparcia działań niskoemisyjnych ze strony sektora finansowego.

4.5.1. Oczekiwane tempo rozwoju polskiej i europejskiej gospodarki

Po okresie relatywnie stabilnego wzrostu PKB trwającym od akcesji Polski do UE do 2008 r. tempo rozwoju gospodarczego spadło w związku z globalną recesją. W latach 2000-2008 wzrost PKB wynosił średnio 4,2% rocznie, zaś w latach 2009-2013 było to już tylko 2,6%. Prognoza Międzynarodowego Funduszu Walutowego (MFW) do roku 2018 przewiduje, że PKB Polski będzie rosł rocznie o 3% rocznie. Zgodnie z analizami Banku Światowego (BŚ) podtrzymanie wysokiego tempa rozwoju gospodarczego po 2020 roku nie będzie możliwe bez podjęcia radykalnych działań mających na celu zwiększenie poziomu konkurencyjności gospodarki (innovacje, wzrost poziomu kapitału społecznego, poprawa stanu infrastruktury, polepszenie jakości usług publicznych oraz administracji).

W latach 2000-2013 dokonywał się systematyczny postęp w konwergencji Polski z krajami UE-27 widoczny w zmniejszającym się dystansie do średniego unijnego poziomu dochodów. Zgodnie z danymi, PKB (w parcie siły nabywczej per capita) stanowił w 2013 r. 66% średniej unijnej, podczas gdy w roku 2000 było to tylko 47%. W tym czasie polska gospodarka rozwijała się średnio o 2,2 punktów procentowych rocznie szybciej niż średnio w UE. Według aktualnych prognoz, różnica ta będzie w najbliższych latach wynosić 1,3 punktu procentowego. Globalne i europejskie spowolnienie gospodarcze oznacza obniżenie tempa konwergencji Polski z UE i wzrost zagrożenia wystąpieniem okresów stagnacji rozwojowej, które mogą z kolei stanowić ryzyko dla realizacji NPRGN.

![Rysunek 13 Tempo wzrostu PKB w Polsce w relacji do średniej UE w latach 2000-2013 i prognoza do 2018 roku.](image)

Źródło: Opracowanie na podstawie danych Międzynarodowego Funduszu Walutowego
4.5.2. Struktura produkcji w Polsce

Struktura polskiej gospodarki jest typowa dla krajów na podobnym poziomie rozwoju. Za największą część PKB odpowiadają usługi, udział których w PKB w roku 2013 wg EUROSTAT wyniósł 65%. Drugie miejsce pod względem udziału w PKB zajmują sektory przemysłowe. Od momentu wejścia do UE udział energetyki i przemysłu w PKB w cenach bieżących oscyluje w przedziale ok. 20-22%, transportu (liczonego z gospodarką magazynową wg PKD 2007) – na poziomie ok. 5%, natomiast budownictwa wzrósł z 5% w 2004 r. do 7% w roku 2013. Sektory odpowiadające za największą część (razem ok. 83%) emisji gazów cieplarnianych, tj. energetyka, przemysł, budownictwo i transport wytwarzają łącznie ok. 1/3 PKB Polski. Wpływ realizacji NPRGN na sektor usługowy, stanowiący największy odsetek polskiego PKB, będzie ograniczony.

4.5.3. Kształtowanie się rynku pracy w Polsce

Rysunek 14: Stopa bezrobocia w Polsce na tle średniej w UE w latach 2000-2013

Źródło: Opracowanie PwC na podstawie statystyk Eurostaturu

Drugą charakterystyczną cechą przemian zachodzących na polskim rynku pracy w ostatnich latach jest wciąż trwająca zmiana struktury zatrudnienia. Od roku 2000, czyli w okresie dynamicznego wzrostu zatrudnienia, znacząco spadł udział rolnictwa i przemysłu, wzrosła natomiast waga usług finansowych oraz edukacyjnych, zdrowotnych i społecznych.
4.5.4. Sytuacja fiskalna w Polsce

Rysunek 16. Zadłużenie oraz deficyt sektora publicznego w Polsce na tle średniej UE w latach 2000-2013 oraz prognoza MFW do roku 2018

Źródło: Opracowanie PwC na podstawie danych MFW (www.imf.org)
W roku 2013 zadłużenie sektora publicznego w Polsce wynosiło wg MFW 57,5% PKB, co jest wynikiem zadawalającym w porównaniu do średniej wartości dla UE (89,5%). Na skutek reformy emerytalnej zadłużenie publiczne w Polsce w 2014 r. spadło do około 50% PKB, co jest podobnym poziomem do pozostałych krajów regionu (w roku 2013 – w Czechach 47,6%, na Słowacji 55,3%, na Węgrzech 79,8%).

Jednocześnie, deficyt sektora finansów publicznych w Polsce pozostaje na relatywnie wysokim poziomie. W roku 2013 luka pomiędzy wydatkami i wpływami sektora wyniosła, wg szacunków MFW, 4,6% PKB w Polsce i średnio 3,4% w Europie. Poziom deficytu sektora publicznego w Polsce jest także wyższy niż w krajach regionu: Czechach (-2,9%), na Słowacji (3%), czy Węgrzech (-2,7%).

4.5.5. Poziom oszczędności i inwestycji w Polsce

Należy zwrócić uwagę, iż od 2004 r. relatywnie duży wpływ w strukturze inwestycji realizowanych w Polsce mają przedsiębiorstwa finansowane z udziałem środków publicznych. Udział inwestycji publicznych w polskim PKB wynosił średnio 4,5% (dla UE 2,5%). Oznacza to, że jedna z strony dużą zależność polskich inwestycji od napływu środków z UE, a z drugiej – od sytuacji budżetowej kraju. Średnia całkowita stopa inwestycji w Polsce w latach 2004-2012 wyniosła 21,4% i była wyższa od średniej dla UE (19,9%). Jednocześnie, średnia stopa inwestycji prywatnych wynosiła w Polsce jedynie 16,8% i była poniżej analogicznej wartości w UE (17,4%).

Rysunek 17 Stopa inwestycji publicznych i prywatnych, stopa oszczędności oraz bilans obrotów bieżących w Polsce w latach 2000-2012 (% PKB)

Przyczyną dużej zależności polskiej aktywności inwestycyjnej od środków publicznych, w tym unijnych, tkwi w relatywnie niskiej stopie oszczędności krajowych będących głównym i najbardziej stabilnym źródłem finansowania dla aktywności inwestycyjnej. Średnia stopa oszczędności w Polsce w latach 2000-2012 wynosiła 16,8% przy średniej unijnej na poziomie 20%. W tej sytuacji konieczny jest „import oszczędności”, który powoduje stały deficyt na rachunku obrotów bieżących.
4.5.6. *Bilans handlowy Polski (w tym bilans handlu surowcami)*

Bilans wymiany handlowej Polski wykazuje trwałą tendencję do poprawy. Wg danych Eurostatu, w roku 2000 saldo wymiany towarowej było negatywne i wyniosło -6,4% PKB. Natomiast w 2013 r. nadwyżka w handlu towarami i usługami wynosiła 2,4% PKB.

Zupełnie inaczej przedstawia się bilans wymiany handlowej w sektorze paliw mineralnych, który jest szczególnie istotny z punktu widzenia realizacji NPRGN. W roku 2000 wynosił on 2,2% PKB, a w 2013 – już -3,5% PKB. Wynikało to przede wszystkim z rosnących cen paliw mineralnych na rynkach światowych.

Węgiel wciąż pełni ważną rolę w bilansie handlowym Polski w sektorze paliw. Wysokie zasoby tego surowca ograniczają konieczność importu innych paliw – przede wszystkim gazu. Dlatego ważne jest, by ograniczenie zużycia węgla w ramach realizacji NPRGN nie wiązało się z koniecznością zwiększania importu innych paliw kopalnych.

4.5.7. *Inwestycje zagraniczne w Polsce*

Polska jest krajem relatywnie atrakcyjnym dla inwestorów zagranicznych. Wskazują na to liczne badania prowadzone wśród przedsiębiorców oraz wielkość bezpośrednich inwestycji zagranicznych. Jednocześnie, należy zauważyć, że wartość inwestycji zagranicznych w Polsce w odniesieniu do PKB (47% w 2012 r.) jest w naszym kraju niższa niż w Czechach (70%), na Węgrzech (82%) czy na Słowacji (61%).

Najwięcej inwestycji zagranicznych zostało do tej pory ulokowanych w działalności usługowej. Wg NBP jej udział w całości zainwestowanych środków wynosił 58% w 2012 r. Udział przemysłu wynosi 24%, z czego najwięcej (po 6% całości środków) ulokowano w branży spożywczej, chemicznej oraz naftowej i metalowej. Istotna część inwestycji trafiła także do przemysłu motoryzacyjnego i budowlanego (po 5%). Obserwowane trendy pozwalają przypuszczać, iż zainteresowanie inwestorów zagranicznych polskim przemysłem utrzyma się także w przyszłości.

4.5.8. *Wykorzystanie finansowania z funduszy europejskich*

Zgodnie z zapisami Umowy Partnerstwa, na wsparcie gospodarki niskoemisyjnej Polska powinna przeznaczyć 13% całej kwoty środków przyznanych z Funduszu Spójności oraz Europejskiego Funduszu Rozwoju Regionalnego, czyli około 8,1 mld euro. Na pozostałe cele blisko związane
z rozwójem gospodarki zasobooszczędnej przeznaczone zostanie około 7 mld euro. W sumie oznacza to alokację 15,1 mld euro (czyli ok. 60 mld zł) w latach 2014-2020.

Wydatkowanie powyższych środków stanowi istotne wyzwanie. Przede wszystkim będzie wymagało spełnienia zasad warunkowości oraz bezpośredniego udowodnienia wpływu, jaki środki te mają na rozwój w danym obszarze. Dodatkowym wyzwaniem będzie fakt, iż znaczną część środków na budowę gospodarki niskoemisyjnej przyznana będzie z wykorzystaniem instrumentów zwrotnych. Poprawne skonstruowanie instrumentów finansowych, tak by pozwalały one osiągnąć zakładane cele, wymagać będzie wysiłku administracyjnego i ścisłej współpracy z sektorem prywatnym: przedsiębiorcami i instytucjami finansowymi.

4.5.9. **Nakłady na badania naukowe oraz zdolność do komercjalizacji innowacji**

Podnoszenie konkurencyjności polskiej gospodarki wymagać będzie poprawy w zakresie jej innowacyjności. Dostępne dane wskazują na dystans, jaki w tym obszarze dzieli Polskę od innych rozwiniętych gospodarek świata. Zgodnie z rankingiem *Innovation Union Scoreboard* z 2013 r., w Polsce wskaźnik ten znajduje się na jednym z niższych poziomów w UE.

Podkreślić należy, że od momentu przystąpienia Polski do UE wskaźnik wydatków na działalność innowacyjną oraz badania i rozwój w stosunku do PKB wyraźnie wzrosł, głównie za sprawą coraz skuteczniej wykorzystywanych funduszy unijnych. Według danych Eurostatu, w 2004 r. w Polsce przeznaczano na ten cel 0,6% PKB, a w roku 2012 – 0,9%. Dla porównania, średnia UE wyniosła w 2012 r. 2% PKB.

![Rysunek 19 Pozycja Polski w Innovation Union Scoreboard w roku 2013](image)

Rysunek 19 Pozycja Polski w Innovation Union Scoreboard w roku 2013

Źródło: Opracowanie PwC na podstawie danych Innovation Union Scoreboard

W odróżnieniu od większości państw UE-15, głównym źródłem finansowania wydatków na badania i rozwój w Polsce był sektor publiczny (0,46% PKB). Natomiast sektor przedsiębiorstw był odpowiedzialny za finansowanie badań o wartości około 0,29% PKB.
4.5.10. **Zdolność wsparcia działań niskoemisyjnych ze strony sektora finansowego**

Bardzo ważną rolę w realizacji NPRGN będzie odgrywał polski sektor finansowy zapewniający środki na realizowane projekty i inwestycje. Według raportów NBP, sektor ten jest relatywnie niewielki w relacji do wielkości naszej gospodarki, choć wykazuje tendencję rosnącą.

W roku 2012 aktywa sektora finansowego w Polsce wyniosły w sumie 123% PKB (w porównaniu do 111% w 2009 r.), przy średniej unijnej rzędu 509% oraz średnich dla Czech i Węgier na poziomie odpowiednio 153% i 136%. Niemniej jednak, pomimo trwających od kilku lat niekorzystnych zjawisk makroekonomicznych, polski system finansowy, w tym w szczególności sektor bankowy, jest stabilny. Šwiadczy o tym wysoka odporność polskich banków na ewentualne szoki, którą potwierdzają wyniki testów warunków skrajnych (tzw. stress-testów) przeprowadzanych przez NBP.

Z punktu widzenia realizacji Programu istotne wydaje się zapewnienie komercyjnych źródeł finansowania działalności innowacyjnej. Jednym z istotniejszych są fundusze typu Private Equity/Venture Capital (PE/VC). Według danych Europejskiego Stowarzyszenia Venture Capital za rok 2012, wartość inwestycji realizowanych w Polsce przez fundusze PE/VC wynosi obecnie jedynie 0,002% PKB, przy średniej europejskiej na poziomie 0,024% PKB (dziesięciokrotnie mniej). Dodatkowo w raporcie o rozwoju rynku finansowego w Polsce NBP wskazuje, iż fundusze PE/VC mają znacznie mniejszą skłonność do inwestowania w ryzykowne projekty typu „start-up” niż ich odpowiedniki w UE. Dynamiczny rozwój tego typu funduszy w Polsce może być istotnym wsparciem dla realizacji NPRGN.

4.5.11. **Analiza SWOT uwarunkowań ekonomicznych**

<table>
<thead>
<tr>
<th>Silne strony</th>
<th>Słabe strony</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Relatywnie wysokie tempo rozwoju gospodarki.</td>
<td>• Niska mobilność geograficzna i zawodowa siły roboczej.</td>
</tr>
<tr>
<td>• Poprawiający się bilans obrotów bieżących.</td>
<td>• Utrzymujący się dług publiczny i deficyt budżetowy.</td>
</tr>
<tr>
<td>• Wysoki poziom absorpcji funduszy europejskich.</td>
<td>• Niska stopa oszczędności.</td>
</tr>
<tr>
<td>• Liczne centra technologiczne.</td>
<td>• Niskie wskaźniki innowacyjności.</td>
</tr>
<tr>
<td>• Niski poziom zadłużenia Polaków.</td>
<td>• Niski udział sektora prywatnego w finansowaniu działalności innowacyjnej.</td>
</tr>
<tr>
<td>• Pozytywne wskaźniki bezpieczeństwa sektora finansowego.</td>
<td></td>
</tr>
</tbody>
</table>

6 Raport o stabilności systemu finansowego” NBP, Grudzień 2013
4.6. Uwarunkowania środowiskowe

Uwarunkowania środowiskowe należą do kluczowych w kontekście realizacji NPRGN. Jednym z zakładanych efektów Programu jest minimalizacja negatywnego wpływu działań gospodarczych na wybrane komponenty środowiska. Wśród uwarunkowań środowiskowych uwzględnione zostały:

- poziom emisji gazów cieplarnianych oraz innych zanieczyszczeń, jak również presja wynikająca z konieczności realizacji celów unijnych w obszarze ochrony środowiska,

- zmiany klimatyczne i ich skutki dla rozwoju polskiej gospodarki,

- poziom i strategia eksploatacji rezerw surowców naturalnych (degradacja ekosystemów, zmiany rzeźby terenu, zniszczenie pokrywy glebowej, zmiany poziomu wód gruntowych w wyniku działalności wydobywczej, koszty rekultywacji)

- pozyskiwanie energii ze źródeł odnawialnych,

- zarządzanie zasobami wodnymi wraz z ochroną wód (poziom zużycia wody, ochrona zasobów wodnych i działania ograniczające zanieczyszczenia),

- zarządzanie odpadami i ściekami,

- ochrona przyrody i krajobrazu, w tym zagospodarowanie terenów zieleni (terenów niezabudowanych w granicach miast i wsi, zajętych przez zespoły roślinności, spełniających funkcje wypoczynkowe, rekreacyjne, zdrowotne i estetyczne i przyczyniających się do utrzymania bioróżnorodności, ochrona zagrożonych gatunków).

4.6.1. Poziom emisji gazów cieplarnianych

Przemiany polityczno-gospodarcze zachodzące po 1990 r. spowodowały, że wielkość emisji gazów cieplarnianych znalazła się znacznie poniżej poziomu określonego dla Polski w Protokole z Kioto. Do zmniejszenia ilości emitowanych gazów przyczyniły się w szczególności:

- rezygnacja z najbardziej energochłonnych procesów technologicznych,

- wzrost efektywności wykorzystywanych paliw,

- zastąpienie niektórych paliw konwencjonalnych paliwami niskoemisyjnymi, mniej uciążliwymi dla środowiska,
• dostosowanie prawodawstwa krajowego do wymogów UE.

<table>
<thead>
<tr>
<th>Rok</th>
<th>Łączne emisje gazów cieplarnianych − wyrażona w ekwiwalencie dwutlenku węgla − ekw. CO₂ [Gg] w mln ton</th>
<th>Zarys przyczyn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>400,7</td>
<td>Spowolnienie regeneracji ekonomicznej</td>
</tr>
<tr>
<td>2010</td>
<td>402,5</td>
<td>Początek regeneracji ekonomicznej</td>
</tr>
<tr>
<td>2009</td>
<td>381,8</td>
<td>Światowa recesja ekonomiczna</td>
</tr>
<tr>
<td>2008</td>
<td>395,7</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>400,7 (maximum wzrostu)</td>
<td>Wzrost spowodowany ożywionym rozwojem gospodarczym, skokowy wzrost rejestracji samochodów</td>
</tr>
<tr>
<td>2005</td>
<td>388,9</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>385,6</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>Koniec spadku emisji</td>
<td>Programy i działania na rzecz efektywnego wykorzystania energii</td>
</tr>
<tr>
<td>2000</td>
<td>384,8</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Maximum wzrostu</td>
<td>Spowodowany modernizacja przemysłu ciężkiego oraz innych sektorów i dynamicznym wzrostem gospodarczym</td>
</tr>
<tr>
<td>1993</td>
<td>Koniec spadku emisji</td>
<td>Wdrożenie kompleksu polityk i działań przede wszystkim prowadzących do poprawy efektywności wykorzystania energii oraz restrukturyzacji zużycia paliw</td>
</tr>
<tr>
<td>1990</td>
<td>452,9</td>
<td></td>
</tr>
<tr>
<td>1988 (rb)</td>
<td>563,4</td>
<td></td>
</tr>
</tbody>
</table>

Rysunek 20 Łączne emisje krajowe gazów cieplarnianych od roku bazowego (rb=1988) do 2012 wraz z oceną prawdopodobnych przyczyn

Źródło: GUS − rocznik statystyczny 2012; Raporty KOBIZE 2012, 2014

4.6.2. Zmiany klimatyczne

4.6.3. Dylematy związane z pozyskiwaniem energii ze źródeł odnawialnych

Pomimo zakwalifikowania przez Unię Europejską OZE jako źródeł wytwarzania tzw. czystej energii, jak przedstawiono w tabeli poniżej, wiele aspektów dotyczących wpływu produkcji energii z tych źródeł na środowisko pozostaje nierozstrzygniętych.

8 Ministerstwo Środowiska (2013): Strategiczny plan adaptacji dla sektorów i obszarów wrażliwych na zmiany klimatu do roku 2020 z perspektywą do roku 2030
Tabela 2 Konfliktowe i bezkonfliktowe źródła energii OZE

<table>
<thead>
<tr>
<th>Bezkonfliktowe – niemające negatywnego wpływu na środowisko</th>
<th>Konfliktowe – wymagana osobna ocena ich wpływu na środowisko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasa odpadowa – odpady z rolnictwa, przemysłu (w tym drzewne) i komunalne</td>
<td>Energia wiatrowa - farmy wiatrowe mogą zakłócać odbiór fal elektromagnetycznych. Siłownie powodują zagrożenia dla ptaków. Energetyka wiatrowa może być uciążliwa ze względu na hałas i wibracje, a także negatywnie wpływa na krajobraz.</td>
</tr>
<tr>
<td>Biogaz – ze składowisk odpadów i czyszczących ścieków</td>
<td>Energetyka wodna - poprzez budowę przegródek na rzekach powoduje zatopienie fragmentów dolin powyżej przegrody, zmiany rezimu hydrologicznego rzeki, przeobrażenia krajobrazu. Praca elektrowni wodnych oznacza gwałtowe zmiany w środowisku, które wymagają osobnej oceny ich wpływu na środowisko.</td>
</tr>
<tr>
<td>Energia odnawialna w systemach rozproszonych (energia słoneczna, pompki ciepła itp.)</td>
<td>Energetyka geotermalna - wykorzystuje energię wód podziemnych, podgrzanych ciepłem wewnętrz ziemi, występujących na różnych głębokościach. Ma wpływ na zagospodarowanie przestrzenne, utrzymywanie i uwarunkowania przyrodnicze. Otwór do pozyskiwania energii geotermalnej i zatłoczania wody nie powinny być lokalizowane na obszarach najcenniejszych przyrodniczo i podlegających ochronie. Eksploatacja energii geotermalnej grozi również zasoleniem wód powierzchniowych i podziemnych. Występuje także możliwość zanieczyszczenia wód głębinowych i powierzchniowych oraz wskutek zanieczyszczenia siłowni powodowania niewyjści (zachodzi nie wszystkie rosliny energetyczne wymagają użycia dużych ilości pierwiastków toksycznych – kadmu, arsenu, selenu i telluru).</td>
</tr>
<tr>
<td>Energetyka oparta na biomase nieodpadowej - wykorzystuje biomasę do produkcji energii, paliw bądź komponentów do biopaliw. Uciążliwości dla środowiska wynika m.in. z konieczności w niektórych przypadkach transportu surowca na znaczne odległości; najczęściej negatywnego oddziaływania plantacji wielkoobszarowych na rośliny różnych rzadów;bioróżnorodności; pogłębiania deficytu wód; eutrofizacji wód spowodowanej niewyjściem (zachodzi nie wszystkie rośliny energetyczne wymagają niewyjścia); wyjałowienia i zanieczyszczenia gleb wód oraz z utratą użytków zielonych.</td>
<td></td>
</tr>
</tbody>
</table>

4.6.4. Zasoby wodne

Woda należy do zasobów strategicznych. Od dostępności oraz jakości wody zależy możliwość funkcjonowania oraz rozwoju niemal wszystkich sektorów gospodarki – szczególnie w rolnictwie, przemysle spożywczym, energetyce, przemyśle chemicznym, hutniczym i lekkim. W tym kontekście należy zauważyć, że zasoby wodne w Polsce w przeliczeniu na mieszkańca są trzykrotnie mniejsze w porównaniu do średniej dla Europy. Pobór wód w Polsce w 2013 r. na cele gospodarki narodowej i ludności wynosił 10 577 hm³, a ślad wodny polskiej gospodarki w przeliczeniu na mieszkańca jest porównywalny z gospodarką Niemiec i wynosi około 1 325 m³.

9 Całkowite zasoby wód płynących Polski w latach przeciętnych wynoszą 62 mld m³ natomiast zasoby wód z odpływu powierzchniowego w 2010 roku wynosiły około 2 300 m³/rok/mieszkańiec.
38
NARODOWY PROGRAM ROZWOJU GOSPODARKI Niskoemisyjnej

rocznie na mieszkańca. Oznacza to, że polska gospodarka wykorzystuje zasoby wodne dwukrotnie mniej efektywnie niż gospodarka Niemiec.

Podobna sytuacja występuje w obszarze ścieków. Zgodnie z danymi. ilość ścieków wytwarzanych w Polsce oraz ich struktura nie zmieniła się zasadniczo od 2000 r. i waha się od około 89 do 92 tys. hm³ rocznie. Ponad 5/6 to ścieki przemysłowe – w tym 1/12 ścieków przemysłowych to wody chłodnicze.

Niewielkie zasoby wodne oraz ich intensywna eksploatacja nie wpływa pozytywnie na ich jakość. Zgodnie z danymi, wyłącznie 7% wód powierzchniowych można zaliczyć do najwyższej klasy. Dodatkowo, ze względu na znaczną zmienność w ilości opadów, w Polsce występują krótkie okresy jej nadmiaru oraz długie okresy niedoboru.

Powyższe dane wskazują, że istnieje konieczność efektywniejszego wykorzystania dostępnych zasobów wodnych w procesach produkcyjnych, zmniejszenia wodochłonności gospodarki oraz zintensyfikowania działań na rzecz zarządzania wodami w kontekście zmian klimatu w taki sposób, aby możliwe było jej magazynowanie w okresach obfitych opadów oraz dystrybuowanie w trakcie niedoborów z jednoczesnym niezaburzaniem lokalnych ekosystemów.

4.6.5. Odpady komunalne

Zgodnie z danymi OECD, w 2012 r. w Polsce wytworzono nieco poniżej 10 mln ton odpadów komunalnych. Większość z nich (około 75%) jest składowana, 12% jest kompostowana, natomiast 13% poddawana jest recyklingowi. Pomimo szybkiego wzrostu gospodarczego w latach 2000-2012, bezwzględna ilość odpadów komunalnych pozostaje na stosunkowo stałym poziomie lub ulega stosunkowo niewielkiemu obniżeniu (z poziomu około 12 mln ton w 2000 r.). Niemniej jednak doświadczenie pozostałych krajów wskazuje, że uniknięcie wzrostu ilości odpadów wytwarzanych przez gospodarstwa domowe przy jednoczesnym wzroście zamożności społeczeństwa jest niezwykle trudne.

Odpady stanowią istotne wyzwanie biorąc pod uwagę transformację niskoemisyjną. Przez wiele lat ich głównym sposobem zagospodarowania było deponowanie na składowiskach, co miało - i wciąż ma - negatywne skutki zarówno dla środowiska, jak i dla gospodarki. Wyzwania dotyczące ochrony środowiska oraz konieczność budowania przewag konkurencyjnych polskiej gospodarki wymagają istotnych zmian w tym zakresie, które spowodują, że odpady będą zagospodarowywane w sposób zrównoważony. Umieszczenie ich jako jednego z elementów gospodarki o obiekcie zamkniętym (circular economy) spowoduje, że jeżeli odpad zostanie już wygenerowany, będzie poddany odzyskowi, w tym w szczególności recyklingowi.

Odpady komunalne - a te stanowią najistotniejszy problem - generowane są głównie w gospodarstwach domowych oraz w niektórych formach działalności gospodarczej.

10 Ślad wodny jest wskaźnikiem zużycia słodkiej wody. Uwzględnia nie tylko bezpośrednie zużycie wody przez konsumenta i producenta, ale także pośrednie zużycie wody (tzw. szary ślad wodny, niebieski ślad wodny, zielony ślad wodny).
Społeczeństwo, mimo przeprowadzonej reformy dotyczącej odpadów komunalnych, wciąż w sposób niewystarczający dokonuje selektywnego zbierania odpadów. Mieszkańcy pożywają się odpadów zmieszanych albo w niewłaściwy sposób je rozdzielają. Powoduje to pogorszenie jakości odpadów i utrudnia ich późniejsze zagospodarowanie. Zgodnie z prowadzonymi badaniami tylko 68% Polaków deklaruje, że w swoich gospodarstwach domowych segreguje odpady.

4.6.6. Ochrona przyrody i krajobrazu

Zgodnie z informacjami GUS Polska zaliczana jest do grupy państw europejskich o najwyższym wskaźniku różnorodności biologicznej zarówno pod względem liczby gatunków, jak i walorów przyrodniczych.\footnote{Ochrona Środowiska 2014, GUS.} Obszary prawnie chronione przyrody obejmują 32,5% terytorium kraju (około 101 tys. km\(^2\)). Mimo tego istotna część gatunków i siedlisk jest wciąż zagrożona. Zgodnie z danymi zawartymi w Programie ochrony i zrównoważonego użytkowania różnorodności biologicznej wciąż nie udało się zahamować procesu wymierania wśród wielu gatunków zwierząt, grzybów i roślin oraz ochrony ich siedlisk. Wyzwaniem jest wypełnienie celów sformułowanych w ramach Komunikatu Komisji z dnia 3 czerwca 2011 r. „Nasze ubezpieczenie na życie i nasz kapitał naturalny – unijna strategia ochrony różnorodności biologicznej na okres do 2020 roku.” [KOM(2011) 244] dotyczących utrzymania i wzmocnienia ekosystemów i ich funkcji.

Niemięniej jednak dzięki obniesieniu poziomu emisji przemysłowych zauważalne jest istotne złagodzenie presji na niektóre siedliska – szczególnie na obszarach leśnych, które ulegały niszczeniu w wyniku przenoszenia niebezpiecznych substancji przemysłowych na znaczne odległości. Wraz z wprowadzeniem nowych, bardziej restrykcyjnych wymogów dotyczących dopuszczalnych norm emisji substancji do wody oraz powietrza zmniejszyło się również ryzyko niekorzystnego oddziaływania na środowisko wodne. Jednak ze względu na niewielkie rozmiary oraz objętość, jak również morphologię – szczególnym wyzwaniem w tym zakresie jest zachowanie równowagi biologicznej Morza Bałtyckiego.

\footnote{Zgodnie z danymi GUS w końcu 2013 r. wśród prawnie chronionych obiektów i obszarów o szczególnym walorach przyrodniczych było ponadto: 1480 rezervatów przyrody o łącznej powierzchni 166 tys. ha, 122 parki krajobrazowe łącznie zajmujące powierzchnię 2531 tys. ha, 385 obszarów chronionego krajobrazu o łącznej powierzchni 7006 tys. ha; 7583 pozostałych form ochrony przyrody (użytki ekologiczne, stanowiska dokumentacyjne i zespoły przyrodniczo-krajobrazowe), które łącznie zajmowały 147 tys. ha; ponad 36 tys. pomników przyrody. W Polsce w ramach sieci Natura 2000 wyznaczono do tej pory 845 specjalnych obszarów ochrony siedlisk (SOO) oraz 145 specjalnych obszarów ochrony ptaków (OSO).}
4.6.7. Analiza SWOT uwarunkowań środowiskowych

Silne strony
- Spadek emisji gazów cieplarnianych oraz poprawa jakości powietrza w porównaniu do 1990 r.
- Rozwój produkcji energii elektrycznej ze źródeł odnawialnych zarówno przez przedsiębiorstwa energetyczne, jak i prosumentów
- Wysoki wskaźnik różnorodności biologicznej.
- Znaczny przyrost długości sieci wodno-kanalizacyjnej.

Słabe strony
- Jeden z najwyższych w UE poziomów emisji CO₂ w relacji do PKB.
- Zjawisko tzw. „niskiej emisji” (indywidualne ogrzewanie domów i mieszkań).
- Niewielkie zasoby wody.
- Niski poziom odzysku odpadów.
- Niewielki odsetek ponownie wykorzystywanych ścieków (np. tzw. szarej wody).
- Degradacja naturalnej rzeźby terenu spowodowana działalnością gospodarczą, w tym niski poziom rekultywacji i rewitalizacji obszarów poeksploatacyjnych.

Szanse
- Rozwój nowych technologii przyczyniających się do redukcji poziomu emisji, w tym wykorzystanie paliw alternatywnych, rozwój OZE, w tym mikro-OZE.
- Zwiększenie dostępu do alternatywnych źródeł energii oraz surowców dzięki zagospodarowaniu odpadów.
- Wprowadzanie działań adaptujących gospodarkę do zmian klimatu.
- Perspektywa wdrożenia w Polsce energetyki jądrowej.

Zagrożenia
- Trudności występujące w związku z czasowymi niedoborami oraz nadwyżkami zasobów wodnych.
- Niewystarczająca liczba nowoczesnych zakładów sortowania i recyklingu odpadów.
- Zwiększenie zapotrzebowania na produkty drewniane, biomasę prowadzące do nadmiernego eksploataowania lasów.
- Zagrożenia dla flory i fauny spowodowane budową elektrowni wodnych i zmianą naturalnego biegu rzek.
- Zagrożenie środowiska naturalnego spowodowane eksploatacją zasobów.

4.7. Uwarunkowania polityczne

Sytuacja geopolityczna stanowi istotne wyzwanie dla przeprowadzenia skutecznej transformacji niskoemisyjnej.

Po pierwsze, brak globalnego porozumienia w sprawie zmian klimatu zmniejsza skuteczność działań podejmowanych przez poszczególne kraje ze względu na możliwość utraty korzyści związanych z wystąpieniem efektu synergii. Po drugie, niestabilne środowisko międzynarodowe sprawia, że kwestia bezpieczeństwa energetycznego stanowi jeden z priorytetów warunkujących możliwość zrównoważonego rozwoju. Bogate w surowce energetyczne Państwa często są areną konfliktów. W tej sytuacji uzasadnione wydaje się ostrożne podejście do kwestii zastępowania rodzimych źródeł energii importem surowców energetycznych, zwłaszcza jeżeli pochodzą one z rynków oligopolistycznych.

Mimo braku porozumienia na szczeblu globalnym, poszczególne państwa oraz Unia Europejska podejmują działania mające na celu zwiększenie efektywności wykorzystania zasobów oraz redukcję emisji CO₂. Działania te powiązane są najczęściej z programami rozwoju nowych technologii. Z raportu przygotowanego m.in. przez Wspólne Centrum Badawcze Komisji Europejskiej wynika, iż cztery największe gospodarze potęgi były odpowiedzialne za 57% światowych emisji CO₂ – Chiny ok. 24%, USA 16%, UE 11%, Indie – 6%.
Zgodnie z przyjętym dwunastym 5-letnim planem rozwoju Chin, emisyjność gospodarki Chin powinna spadać średnio o 4,6% rocznie, aby osiągnąć 17-procentowy cel redukcji emisji CO₂ do 2015 r. w stosunku do roku bazowego. Postanowiono również obniżyć zużycie energii do poziomu poniżej 4 mld ton ekwiwalentu węgla w 2015 r. W celu promowania niskoeemisyjnych źródeł energii, władze Chin zamierzają także promować wykorzystanie gazu tak, aby wzrosł udział tego paliwa w całkowitym zużyciu energii pierwotnej do 10% w roku 2020.

Stany Zjednoczone prowadzą politykę, której efektem jest zarówno zmniejszenie emisyjności, jak również uniezależnienie się od importu paliw m.in. poprzez rozwój OZE oraz eksploatację gazu łupkowego. Szacuje się, że w latach 2005-2012 aż połowa uzyskanej redukcji emisyjności energetycznej wiązała się z upowszechnianiem odnawialnych źródeł energii, natomiast 2/5 wielkości redukcji wiąże się z wykorzystaniem na większą skalę gazu ziemnego.

 Największe ambicje w zakresie ochrony klimatu na poziomie globalnym wykazuje UE, która najpierw jednostronnie przyjęła cel redukcji emisji gazów cieplarnianych do 2020 r. w stosunku do 1990 r. o 20%, a w październiku 2014 r. przedłużyła obowiązywanie pakietu klimatyczno-energetycznego na okres 2020-2030, deklarując redukcję emisji o 40% do 2030 r. w stosunku do roku bazowego.

Centralnym elementem służącym redukcji emisji gazów cieplarnianych w UE jest system ETS, który obliguje objęte nim podmioty do zakupu uprawnień do emisji. Część uprawnień przydzielana jest bezpłatnie, jednak co do zasady uprawnienia uzyskiwane są na aukcjach, a ich cena zależna jest od relacji podaż – popyt. Część krajów UE oraz KE oceniają, że w pełni rynkowy charakter systemu nie zapewnia wystarczających środków do inwestycji, gdyż w okresie dekonkurenty gospodarczej ceny uprawnień, a tym samym atrakcyjność inwestycji niskoeemisyjnych, spadają. W związku z tym należy oczekiwać ze strony KE i niektórych państw członkowskich działań mających na celu wzrost ceny uprawnień do emisji. Będzie to miało istotne konsekwencje dla polskiej gospodarki, dla której koszty wdrożenia działań z zakresu unijnej transformacji niskoeemisyjnej są wyraźnie większe niż średnia unijna.

 W sposób szczególny należy monitorować przebieg dyskusji w zakresie celów dla sektorów non-ETS (dla przykładu znajduje się tu budownictwo, rolnictwo i transport), gdyż ze względu na lukę rozwojową między Polską a krajami „starej UE” należy przyjąć, że emisje w Polsce w tych sektorach mogą w sposób naturalny rosnąć. Zbyt rygorystyczny cel redukcyjny nałożony na przykład na transport lub budownictwo w Polsce mógłby zagrozić realizacji wytyczonych ścieżek rozwoju w tych obszarach. Dotyczy to, w odniesieniu do sektorów non-ETS na poziomie Rady Europejskiej ustalono jedynie, że cele krajowe na rok 2030 będą dostosowane do poziomu PKB poszczególnych krajów (najniższe cele dla krajów biedniejszych) i będą się zawierać między 0 a -40% w stosunku do roku 2005.

Krajowe uwarunkowania polityczne dla realizacji NPRGN są wypukłymi wstępnych pozostałych prezentowanych w Diagnozie czynników gospodarczych, społecznych i środowiskowych. Do najważniejszych czynników należy zaliczyć skłonność (lub jej brak) społeczeństwa do ponoszenia kosztów związanych z przeprowadzeniem transformacji niskoeemisyjnej, jak również przyjęty model rozwoju podstawowych gałęzi gospodarki przy uwzględnieniu faktu zmniejszania się dostępnej ilości zasobów naturalnych oraz wpływu ich eksploatacji nie tylko na środowisko, ale również poziom życia i zdrowia mieszkańców.
Analiza SWOT uwarunkowań politycznych

Silne strony	Słabe strony
• Ogólnoswiatowy trend dążenia do ograniczenia emisji gazów cieplarnianych.
• Duże własne zasoby surowców energetycznych pozwalające zapewnić bezpieczeństwo energetyczne.
• Stabilnie rozwijająca się gospodarka, która okazała się relatywnie odporna na kryzys.
• Silna pozycja Polski w grupie tzw. nowych państw członkowskich UE.
• Brak spójnej polityki i globalnej strategii skierowanej na redukcję emisji gazów cieplarnianych.
• Konieczność zaangażowania znacznych środków finansowych na dokonanie transformacji niskoemisyjnej.
• Niska aktywność obywatelskiego społeczeństwa.

Szanse	Zagrożenia
• Dążenie światowych gospodarek do obniżania emisyjności i zmiany miksów energetycznych.
• Przekaz i rola mediów w kształtowaniu opinii społecznej.
• Utrudniony dostęp do innych niż węgiel źródeł surowców energetycznych (długotrwała niestabilność polityczna krajów i regionów zasobnych).
• Niewystarczające uwzględnienie charakterystyki poszczególnych państw członkowskich w procesie formułowania przez UE celów dotyczących polityki klimatyczno-energetycznej.

4.8. Uwarunkowania prawne

Istotnymi z punktu widzenia transformacji niskoemisyjnej są przede wszystkim zasady:

- wykorzystywania zasobów środowiska;
- prowadzenia inwestycji;
- prowadzenia działalności gospodarczej.

Kwestia roli prawa w zakresie ochrony środowiska i gospodarowania zasobami uległa zmianom w okresie ostatnich 30 lat. W latach 80-tych ubiegłego stulecia w regulacjach dotyczących ochrony środowiska dominowało podejście oparte na działaniach zmniejszających negatywny wpływ działalności ludzkiej na środowisko. Oznaczało to koncentrację inwestycji w przedsiębiorstwach na technologii i rozwiązaniach tzw. końca rury. Wraz z rosnącą świadomością nieodnawialności wielu zasobów główny nacisk zaczęto kłaść na poprawę efektywności oraz wielokrotności wykorzystania tych samych zasobów.

W ramach nowego podejścia przepisy dotyczące ochrony środowiska oraz prowadzenia działalności gospodarczej mają się wzajemnie uzupełniać. Możliwość prowadzenia działalności gospodarczej w wielu sektorach uzależnione jest od spełnienia rygorystycznych wymagań – w całym procesie produkcyjnym wraz z zagwarantowaniem efektywności środowiskowej produktów w całym cyklu życia. W przyszłości realne jest większe niż obecnie uwzględnienie tzw. kosztów zewnętrznych działalności gospodarczej. O ile stanowi to duże zagrożenie dla funkcjonowania najbardziej zanieczyszczających środowisko sektorów przemysłu, to z drugiej strony troska o środowisko powinna stanowić szansę dla rozwoju nowych ekologicznych produktów.

Polski system prawa w zakresie ochrony środowiska oraz dostępu do zasobów uległ zdecydowanym zmianom wraz z wejściem Polski do UE oraz koniecznością dostosowania się do wysokich standardów ustanowionych w krajach Europy Zachodniej. Większość podstawowych
zasad w tym zakresie została transponowana do polskiego systemu prawnego jeszcze przed 2004 rokiem – niemniej jednak ze względu na kosztoczoności faktycznego wypełnienia wymagań, ich wdrożenie przesunęło się w wielu obszarach o wiele lat m.in. dzięki wynegocjowanym okresom przejściowym. Niemniej jednak z informacji KE wynika, że tylko w 2010 r. toczyło się przeciwko Polsce 26 spraw dotyczących naruszeń w zakresie prawa ochrony środowiska – w tym najwięcej z zakresu ochrony przyrody, wód, odpadów i chemikalii.

Zasady eksploatacji zasobów środowiska są wyznaczone zarówno w normach generalnych zawartych w umowach międzynarodowych, konstytucji, ustawie z dnia 27 czerwca 2001 r. Prawo ochrony środowiska, ustawie z dnia 9 czerwca 2011 roku Prawo geologiczne i górnicze jak również w około 500 innych aktach prawnych. Dotyczą one m.in. zasad wykorzystywania wód, powietrza, gleb, kopalin, planowania inwestycji, obszarów chronionych oraz dostępu społeczeństwa do informacji o środowisku.

Regulacje w zakresie ochrony środowiska oraz dysponowania zasobami operują się m.in. na katalogu zasad generalnych. Wydaje się, że najważniejszą zasadą z punktu widzenia wdrażania NPRGN jest odpowiedzialność podmiotu korzystającego ze środowiska za szkody wyrządzone w trakcie jego działalności, w tym zasada „zanieczyszczający płaci”. Do głównych narzędzi zapewniających implementację prawa związanego z wykorzystywaniem zasobów środowiska należą standardy i zezwolenia, jak również opłaty, podatki oraz kary w przypadku łamania przyjętych przepisów – w tym najbardziej dotkliwe kary ograniczenia prowadzenia działalności gospodarczej. Prawo jest egzekwowane przez wysepcjalizowany aparat kontrolny.

Prowadzenie procesu inwestycyjnego (szczególnie inwestycji infrastrukturalnych) związane jest z koniecznością spełnienia wielu norm – w tym w zakresie ochrony środowiska. Ocenia się przykładowo, że proces przygotowania inwestycji kolejowej tj. zgromadzenie całkowitej dokumentacji pozwalającej na prace „w terenie” (np. przebudowy trakcji) może trwać nawet dwukrotnie dłużej niż fizyczne wykonanie inwestycji. Dodatkowo dynamicznie zmieniające się przepisy prawa w przypadku dużych inwestycji mogą wpływać na konieczność modyfikacji wcześniej przyjętych założeń projektowych, – co wpływa na koszt inwestycji oraz jej terminowość.

Wyniki przeprowadzanych badań wśród przedsiębiorców wskazują, że niestabilność prawa oraz trudność w jego interpretacji jest jedną z najczęstszych przeszkód w prowadzeniu działalności gospodarczej w Polsce (razem z wysokimi kosztami pracy oraz podatami). Przedsiębiorcy wskazują dodatkowo na opieszałość urzędów oraz wyzwania związane z funkcjonowaniem sądownictwa w Polsce (długie, skomplikowane procedury oraz okres oczekiwania na wyrok).

Wprowadzanie odpowiednich norm prawnych dotyczących efektywności wykorzystania zasobów jest szczególnie istotne w obszarach o największym potencjale redukcji emisji: energetyce, budownictwie, transporcie oraz przemysł. Należy jednak pamiętać, aby wprowadzane obciążenia były adekwatne do uzyskiwanych zysków oraz nie powodowały odpływu kapitału z Polski i utrudniały procesów modernizacyjnych.
Analiza SWOT uwarunkowań prawnych

Silne strony

- Wprowadzenie regulacji wspierających zrównoważoną produkcję i konsumpcję (np. eco-etykiety, normy dotyczące zużycia energii).
- Ułatwienie procedur administracyjnych związanych z rozpoczęciem biznesu, uzyskiwaniem pozwolenia na budowę.

Słabe strony

- Przepisy prawa, np. dot. systemu wsparcia OZE i kogeneracji postrzegane są przez uczestników rynku jako niepewne.
- Długotrwałe procedury egzekwowania prawa
- Trudności w prowadzeniu inwestycji wynikające z wymogów ochrony środowiska (NATURA 2000), niestabilnych i wciąż zmieniających się przepisów (np. często zmiana prawa energetycznego), a także nadmiernie biurokracji oraz braku spójności i niejasności przepisów prawa (np. KPA).
- Trudności w egzekwowaniu prawa przez aparat administracyjny.

Szanse

- Obowiązkowe cele UE dotyczące ochrony środowiska i przeciwdziałania zmianom klimatu.
- Regulacje wymuszające modernizację i podniesienie standardów produkcji.
- Derogacje w zakresie kształtowania regulacji przyznawania pomocy publicznej na projekty obniżające emisjność.
- Wprowadzenie norm i mechanizmów wsparcia finansowego na rzecz rozwoju budownictwa prawie zero-energetycznego

Zagrożenia

- Wprowadzenie dalszych, trudnych do spełnienia wymogów prawnych w zakresie ochrony środowiska
- Opóźnienia w transpozycji dyrektyw powodujące brak stabilnego i przewidywalnego otoczenia dla inwestorów.
- Zaostrzenie prawa o pomocy publicznej utrudniające rozwój sektora energetycznego w Polsce.

4.9. Uwarunkowania społeczne i etyczne.

Kapitał społeczny ma znaczący wpływ na jakość i skuteczność realizacji działań biznesowych. W tym kontekście projekt transformacji niskoemisyjnej będzie miał większe szanse powodzenia, jeśli zaangażowane podmioty będą działały w otoczeniu sprzyjającym rozwojowi transparentnych i opartych na zaufaniu relacji biznesowych, jak również odpowiedzialnych relacji pomiędzy różnymi grupami interesariuszy (m.in. konsumentami, przedsiębiorcami, organizacjami pozarządowymi, środowiskami naukowymi).

Uwarunkowania etyczne obejmują postawy i zachowania, które ściśle wiążą się z pojęciem kapitału społecznego rozumianego jako potencjał budowania sieci współpracy opartych na zaufaniu i wspólnych wartościach.

W ramach niniejszego rozdziału przeanalizowano następujące elementy:

- **Etykę i postawy społeczne** – przejawiające się w dużej mierze w zaufaniu społecznym i kapitale ludzkim.
- **Etykę w biznesie** – związaną z zasadami i sposobem postępowania w odniesieniu do obowiązujących norm etycznych w środowisku biznesowym, zarówno wewnątrz firm jak i pomiędzy nimi.
Ryzyko korupcji – związane przede wszystkim z obecnością tego zjawiska w Polsce oraz jego konsekwencjami dla rozwoju działań gospodarczych.

4.9.1. Etyka i postawy społeczne

Jednym z podstawowych czynników kształtowania postaw oraz kapitału społecznego danego kraju jest zaufanie. Ta cecha dotyczy zarówno relacji między pojedynczymi ludźmi, jak również pomiędzy reprezentowanymi przez nich przedsiębiorstwami, sektorami, społecznościami, grupami zawodowymi itp. Pod względem ogólnego poziomu zaufania Polska zajmuje jedno z ostatnich miejsc wśród krajów objętych badaniem European Social Survey (ESS).13 Zgodnie z jego wynikami, zaledzie mniej niż 1/8 respondentów zgadza się z tezą, że „większość ludzi można ufać”. Dla porównania w większości państw skandynawskich wynik odpowiedzi pozytywnych był trzykrotnie wyższy.14

Polacy znacznie rzadziej niż przedstawiciele innych społeczeństw wierzą też w dobre intencje innych ludzi - taką postawę przyjmuje zaledwie 14% respondentów natomiast 16% uważa, że ludzie najczęściej starają się być pomocni.15

Rysunek 21 Odsetek osób w wieku 16 lat i więcej ufających innym ludziom.

Zaufanie jest jedną z kluczowych składowych kapitału społecznego (obok aktywności organizacyjnej, poziomu korupcji, etyki korporacyjnej), którego poziom, pozwala w znaczącym stopniu przewidzieć tempo wzrostu gospodarczego w kolejnych 12 latach.16 Badania dowodzą, że poziom zaufania społecznego ma duży wpływ na rozwój gospodarczy, a zatem jest też istotny z punktu widzenia gospodarki niskoemisyjnej. Z badań wynika również, że, podczas gdy jednostki w Polsce radzą sobie coraz lepiej, to wspólnoty i społeczności nie potrafią działać jako efektywne organizmy.17 O dobro wspólne dbamy tylko, dlatego, że zmuszają nas do tego regulacje prawno-podatkowe, nie zaś dlatego, że czujemy się za nie współodpowiedzialni.

15 Wg Europejskiej Diagnozy Społecznej z 2013 r.
16 (Czapński, 2011b).
17 Wg Europejskiej Diagnozy Społecznej z 2013 r.
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

Rysunek 22 Odsetek osób w wieku 16 lat i więcej lat przekonanych, że ludzie najczęściej starają się być pomocni

Niski poziom zaufania oraz kapitał społeczny rozumianego jako sieci współpracy, w których obowiązują podobne wartości, wskazują, że polskie społeczeństwo nie jest motywowane do działań w myśl idei dobra wspólnego, w tym na rzecz ochrony środowiska, a w dalszej perspektywie – budowania gospodarki niskoemisyjnej. Te idee nie stanowią motoru podejmowania przez jednostki czy gospodarstwa domowe decyzji o inwestycjach w rozwiązania energooszczędne lub niskoemisyjne.

W związku z powyższym, najskuteczniejszymi zachętami pozostaną bodźce finansowe. Konieczne wydaje się również poszerzenie zakresu działań edukacyjnych, zarówno w obszarze kształcenia podstawowego, jak i świadomości społecznej. To właśnie one stanowią podstawę długofalowych inwestycji w kapitał społeczny i pozwolą Polakom znaleźć motywację do dbałości o środowisko.

4.9.2. Etyka w biznesie

Etyka biznesu jest sposobem prowadzenia działalności przez firmę. Określa standardy pracy wewnątrz organizacji, sposób kształtowania relacji z klientami i innymi partnerami biznesowymi oraz rolę firmy w społecznościach i krajach, w których przedsiębiorstwo prowadzi swoją działalność.

Do kluczowych czynników etycznego funkcjonowania firmy można zaliczyć:
- uczciwość na każdym etapie relacji biznesowych (wewnętrznych i zewnętrznych), odpowiedzialność za każde działanie,
- szacunek wobec innych,
- determinację w przestrzeganiu norm etycznych obowiązujących w firmie,
- zaangażowanie wszystkich pracowników w etyczne działania.

Wykluczenie norm etycznych z praktyk biznesowych może skutkować utratą zaufania społecznego, konfliktami, utratą reputacji, ograniczeniem możliwości zatrudniania, a w konsekwencji także potencjału rozwojowego firmy. W kontekście rozwoju gospodarki...
niskoemisyjnej przedmiotem zainteresowania powinny być przede wszystkim normy etyczne dotyczące dbałości o środowisko.

Cześć firm, także polskich, wdraża narzędzia mające na celu zaszczyplenie zachowań etycznych wśród pracowników. Przedsiębiorstwa wprowadzają m.in. kodeksy etyczne, które zawierają wartości uznanie za ważne w danej firmie, oraz definiują zestaw pożądanych zachowań, m.in z zakresu ochrony środowiska. Działania polegające na formalizowaniu kultury pracy nie zawsze są odbierane pozytywnie przez pracowników, np. systemy zgłaszania naruszeń bywają postrzegane jako ingerencja w sferę prywatną.

Posiadanie stosownych narzędzi nie znaczy, że w danej firmie zostały wyelminowane działania nieetyczne. Badania opinii wskazują, że tylko niecałe 45% Polaków uważa, że kierownictwo ich firmy prowadzi biznes w sposób uczciwy i etyczny. Po więcej, opinie te są coraz mniej pozytywne dla pracodawców. O ile w 2010 r. i w 2011 r. przekonanie o uczniwym i etycznym sposobie prowadzenia firmy miała ponad połowa respondentów (odpowiednio 51,7% i 52,2%), to w 2012 r. odsetek takich odpowiedzi wyniósł zaledwie 44,8%. W 2013 r. ocena ta utrzymywała się na podobnym poziomie (44,65%).

Świadomość w zakresie odpowiedzialnych zachowań i postaw jest w małych i średnich przedsiębiorstwach (MŚP) jeszcze niższa. Jedynie 25% badanych firm zapewniło, że wdraża politykę środowiskową i towarzyszą jej udokumentowane i mierzalne cele, natomiast ponad 56% nie prowadziło takiej polityki i w ograniczonym stopniu rozumiało zasadność tego rodzaju działań. Z badań odpowiedzialności przedsiębiorców wynika, że zaledwie dla 29% respondentów istotna jest etyka i odpowiedzialność w ramach takich działań jak np. tworzenie nowego produktu, usługi, zachowanie bezpieczeństwa i jakości.

Podsumowując, działania etyczne mają coraz większe znaczenie dla firm w Polsce, choć zdecydowanie większą wagę przykładają do nich duże przedsiębiorstwa (przynajmniej na poziomie deklaracji). Z perspektywy gospodarki niskoemisyjnej ważne jest to, że elementy etyki środowiskowej są w katalogu działań etycznych zjawiskiem stosunkowo nowym. Choc ich spektrum stopniowo się poszerza, składają się na nie najczęściej działania reaktywne, wynikające z dostosowania polskich przepisów do wymogów przepisów prawa UE. Warto również podkreślić, że budowanie świadomości ekologicznej pracowników i szerzenie działań zasobooszczędnych w firmach może spowodować dodatkowy pozytywny efekt w postaci przeniesienia tych zachowań na grunt gospodarstw domowych.

4.9.3. Ryzyko korupcji

Korupcja, rozumiana jako nadużywanie urzędu publicznego lub pozycji zawodowej w celu osiągania prywatnych korzyści, jest w opinii Polaków dużym problemem – uważa tak 87% badanych, spośród których 15% deklaruje zetknięcie się z sugestią wręczenia łapówki. Co istotne, 32% przedsiębiorców wymienia korupcję jako przeszkodę w prowadzeniu działalności gospodarczej w Polsce, a jednocześnie 92% uważa, że wręczanie łapówek to jeden
z najłatwiejszych sposobów uzyskania pozytywnych decyzji w sektorze publicznym.22 Polska w Rankingu Transparency International Corruption Perception Index 2013 zajmuje 38. miejsce w Europie pod względem postrzegania zjawiska korupcji w sektorze publicznym.23

Jak pokazują badania, mimo rosnącej popularności tematyki etyki biznesowej oraz coraz powszechniejszych wysiłków firm w zakresie budowania świadomości pracowników, szerzenia postaw i wartości etycznych – nadal występują działania wykraczające poza kanony etyki biznesowej. Taki stan rzeczy może mieć wpływ na wdrażanie NPRGN, ponieważ okoliczności te nie sprzyjają realizacji celów biznesowych i mogą ograniczać skłonność do rozwijania nowych segmentów działalności i inwestowania w innowacyjne przedsięwzięcia.

4.9.4. Analiza SWOT uwarunkowań społecznych i etycznych

Silne strony
- Popularyzacja pojęcia etyka biznesu, szczególnie wśród dużych firm.
- Obecność narzędzi umożliwiających wdrażanie wartości i postaw etycznych w dużych firmach.
- Wymiana praktyk i wiedzy z przedsiębiorstwami globalnymi m.in. w zakresie etyki.
- Wytwierdzająca się nowa kultura wymiany dobrych praktyk i współpracy pomiędzy firmami z tej samej branży lub regionu (np. klastry).

Słabe strony
- Niskie zaufanie społeczne.
- Brak powszechnej kultury organizacyjnej (etyki biznesu) promującej pozytywne wartości i transparentne zasady w biznesie.
- Niska świadomość wagi etyki w MŚP stanowiących większość polskich firm.
- Niska innowacyjność wynikająca z braku zaufania i niskiego poziomu kapitału społecznego.

Szanse
- Zwiększenie presji na etyczne zachowania w biznesie ze strony firmy międzynarodowych.
- Wdrożenie do biznesu młodego, bardziej „obywatelskiego” położenia z większą świadomością kwestii ekologicznych i społecznych.
- Wymogi dotyczące praktyk biznesowych stawiane przez instytucje dysponujące środkami unijnymi.
- Tworzenie przestrzeni i mechanizmów zwiększających wymianę praktyk i zaufanie pomiędzy podmiotami gospodarczymi.

Zagrożenia
- Niechęć do zmian, które będą zachodzić w wyniku wdrażania nowych polityk, programów gospodarczych, itp.
- Postrzeganie wdrażania zmian jako procesu nietransparentnego.
- Utrzymywanie się zachowań korupcyjnych.

22 Jak wynika z badań CBOS przeprowadzonych w listopadzie 2013 r.
23 Według Transparency International; Corruption Perception Index 2013.
II

CEL, PRIORYTETY I DZIAŁANIA
5. **Cel główny Narodowego Programu Rozwoju Gospodarki Niskoemisyjnej**

Celem głównym NPRGN jest Rozwój gospodarki niskoemisyjnej przy zapewnieniu zrównoważonego rozwoju kraju.

Reakcja celu głównego zakłada jednoczesną konieczność podjęcia działań stymulujących rozwój gospodarczy, potrzebę uwzględnienia ochrony środowiska oraz aspektów społecznych w planowanych przedsięwzięciach w perspektywie do 2050 roku. Program z jednej strony będzie odpowiadał na wyzwania związane ze zmianami klimatu, przede wszystkim jednak pozwoli na stworzenie, w dłuższej perspektywie czasowej, optymalnego modelu nowoczesnej materialo- i energooszczędnej gospodarki, zorientowanej na innowacyjność i zdolnej do konkurowania na europejskim i globalnym rynku. Priorytetem jest, aby działania, które zostaną ujęte w NPRGN, wspierały wzrost gospodarczy.

Dalsza transformacja polskiej gospodarki w kierunku niskoemisyjnym jest niezbędna biorąc pod uwagę uwarunkowania zewnętrzne, jak też konieczność podążania ścieżką zrównoważonego rozwoju. Ważne jest, aby transformacja została wykorzystana przede wszystkim do kreowania nowych szans i przewag konkurencyjnych. Istotą NPRGN jest zapewnienie korzyści ekonomicznych, społecznych i środowiskowych płynących z działań zmniejszających emisje.

Program koncentruje się na obszarach wzrostu gospodarczego przez przyznanie gospodarki o zamkniętym obiegu. Obecnie wiele gospodarek wciąż funkcjonuje zgodnie z linearnym modelem rozwoju opartym o schemat „weź, wyprodukuj, zużyj i wyrzuć”, który zakłada, iż wszystkie niezbędne zasoby są dostępne w wystarczająco dużych (nieograniczonych) ilościach, a zarazem w niskiej cenie. Tymczasem takie podejście, przy wciąż rosnącej konsumpcji na przykład poprzez przewidywany wzrost liczby ludności (prognozuje się, że do 2045 r. będzie 9 mld ludzi), prowadzi do wzrostu emisji zanieczyszczeń, w tym emisji gazów cieplarnianych i dalszej degradacji środowiska. To z kolei nie tylko pogarsza jakość życia społeczeństw – wzrost zanieczyszczeń powietrza przekłada się na większą zachorowalność na choroby płuc i nowotworowe – ale także zagraża konkurencyjności przemysłu, ograniczając jego dostęp do surowców.

W tym kontekście naturalnie wydaje się poszukiwanie innego, mniej zasobochłonnego modelu rozwoju poprzez budowę gospodarki o zamkniętym obiegu, która w swoim docelowym kształcie może znacząco zminimalizować zapotrzebowanie na pierwotne surowce. Podstawową zaletą wprowadzenia takiego modelu gospodarczego jest ograniczenie ilości odpadów, a także radykalny wzrost ilości odpadów powtórnie wykorzystywanych w produkcji, co nie tylko będzie skutkować ograniczeniem ilości składowisk, ale może być źródłem przewag kontrkurencyjnych (surowiec wtórny ma szanse być tańszy od surowca pierwotnego). Przeprowadzone na potrzeby KE badania w zakresie efektywności wykorzystania zasobów wskazują, iż podejście oparte na gospodarce o obiegu zamkniętym oferuje duże możliwości zaozczędzenia kosztów materiałów przez przemysł UE, a dzięki tworzeniu nowych rynków i nowych produktów może przyczynić się do znacznego wzrostu PKB.

Przejście na gospodarkę o zamkniętym obiegu wymaga wprowadzenia zmian na każdym etapie tworzenia łańcucha wartości, od fazy projektowania produktu poprzez produkcję bardziej zrównoważoną do nowych sposobów przekształcania odpadów w zasoby. Wymaga również...
nowych modeli biznesowych, jak i nowych zachowań konsumentów. Wg szacunków opracowywanych na zlecenie KE w latach 2000-2011, produktywność zasobów w UE wzrosła o 20%, choć w istotnym stopniu przyczyniła się do tego recesja. Utrzymanie tej stopy wzrostu produktywności zasobów przyczyniłoby się do dodatkowego wzrostu PKB do 2030 r. o prawie 1% i ponad 2 mln nowych miejsc pracy.24

Podjęcie wysiłków na rzecz zmniejszania emisyjności gospodarki, m.in. dzięki zwiększaniu efektywności energetycznej, zrównoważonej reindustrializacji oraz zwiększaniu efektywności wykorzystywania zasobów, jest zgodne z celami najważniejszych dokumentów strategicznych (na szczeblu krajowym oraz UE).

Zgodnie z koncepcją gospodarki o zamkniętym obiegu, realizacja celu głównego wspierana będzie przez następujące cele szczegółowe:

1. **Niskoemisyjne wytwarzanie energii.** Energia jest niezbędna na każdym etapie gospodarki o zamkniętym obiegu, stąd tak ważne jest by pozyskiwać ją w sposób przyjazny środowisku i po możliwie najniższej cenie.

2. **Poprawa efektywności gospodarowania surowcami i materiałami, w tym odpadami** - skutkująca redukcją odpadów na składowiskach i zwiększeniem stopnia ich powtórnego wykorzystania.

24 Modelling the Economic and Environmental Impacts of Change in Raw Material Consumption (2014), Cambridge Econometrics et al.

4. Transformacja niskoemisyjna w dystrybucji i mobilności, obejmująca sektor transportu i handlu.

5. Promocja wzorców zrównoważonej konsumpcji. Bez zmian w sferze świadomości nie jest możliwe wykreowanie popytu na zrównoważone produkty, a tym samym przejście od gospodarki linearnnej do cyrkularnej.

Realizacja celu głównego i celów szczegółowych NPRGN ma ułatwić adaptację wszystkich sektorów do wymogów gospodarki niskoemisyjnej.

Zgodnie z przyjętym modelowaniem makroekonomicznym (szczegóły w rozdziale 11.) wdrożenie działań na rzecz transformacji niskoemisyjnej przekłada się na stopniowy spadek poziomu emisji z poziomu około 400 mln ton ekwiwalentu dwutlenku węgla w 2010 roku do około 250 mln ton ekwiwalentu dwutlenku węgla w 2050 roku. Oznacza to redukcję emisji na poziomie około 149 mln ton w stosunku do scenariusza bez podjęcia interwencji, co odpowiada spadkowi emisji na poziomie około 37% względem 2010 roku oraz 44% względem roku 1990.

Rysunek 23 Emisyjność polskiej gospodarki w scenariuszu bez podjęcia interwencji (BAU) oraz w scenariuszu z realizacją działań na rzecz transformacji niskoemisyjnej.
6. Cel szczegółowy A: Niskoemisyjne wytwarzanie energii

Stabilne dostawy energii po osiągalnych dla odbiorców cenach warunkują zarówno jakość życia ludzi, jak i funkcjonowanie gospodarki. Z tego powodu dobrze zaplanowana i efektywna kosztowo transformacja energetyki jest kluczowa dla powodzenia całego procesu reorganizacji niskoemisyjnej w Polsce. Wynika to nie tylko z faktu, że energetyka odpowiada za ponad 40% emisji gazów cieplarnianych w Polsce, ale także z tego, że sposób wytwarzania energii jest istotnym czynnikiem wpływającym na poziom śladu węglowego na poszczególnych etapach procesu produkcyjnego. Biorąc pod uwagę tendencję do uwzględniania śladu środowiskowego w cenach dóbr i usług, przekształcenie energetyki w kierunku niskoemisyjnym staje się niezbędne dla zachowania konkurencyjności całej gospodarki. Jednocześnie, w sytuacji braku postępu w obszarze wydobycia gazu łupkowego oraz wobec coraz wyższych kosztów wydobywania zlokalizowanego w Polsce węgla, transformacja niskoemisyjna staje się ważnym czynnikiem podniesienia bezpieczeństwa energetycznego Polski. Opieranie się na wytwarzaniu energii głównie z jednego surowca powoduje dużą wrażliwość na zakłócenia jego dostaw (np. gdy wyczerpują się zasoby krajowe lub ich wydobycie staje się nieopłacalne), a także na wahania jego ceny.

Dzisiejszy homogeniczny miks energetyczny Polski (ok. 83% energii elektrycznej wytwarzanej jest z węgla) jest w dużym stopniu pochodząną historycznego rozwoju sektora energetyki, ale także obiektywnych ograniczeń, które hamują rozwój OZE i energetyki jądrowej także współcześnie. Do ograniczeń rozwoju stabilnych niskoemisyjnych źródeł energii zaliczyć należy kapitałochłonność inwestycji energetycznych, ograniczone możliwości przyrodnicze w zakresie rozwoju hydroenergetyki oraz uzależnienie od importu gazu z jednego kierunku, co stawia pod znakiem zapytania zasadność opierania przyszłego miksu energetycznego właśnie o ten surowiec (chyba, że dokona się istotny postęp w zakresie wydobywania gazu łupkowego w Polsce).

Oprócz struktury miksu energetycznego istotnym czynnikiem wpływającym na wysoką emisyjność polskiej energetyki jest niska sprawność instalacji, wynikająca z zaawansowanego wieku urządzeń. Ze względu na wymagania dyrektywy o emisjach przemysłowych Polska jest zobowiązana do wyłączenia do roku 2020 bloków o łącznej mocy 6600 MW, a do roku 2028 kolejnych bloków o mocy 10 tys. MW. Jest to zarówno zagrożenie dla bezpieczeństwa energetycznego Polski jak też znaczące obciążenie dla sektora energetyki (odtworzenie mocy pochłonie znaczną część kapitału inwestycyjnego sektora), równocześnie jednak jest to szansa odbudowania mocy przy wykorzystaniu niskoemisyjnych technologii. Już samo zastąpienie starych siłowni węglowych, których sprawność jest znacznie poniżej średniej sprawności elektrowni w Polsce, szacowanej na 35%, elektrowniami o sprawności ok. 45% umożliwi znaczącą redukcję emisji dwutlenku węgla (zakłada się, że poprawienie sprawności o 1% przyczynia się do redukcji emisji tego gazu o 2%).

W ramach prac nad NPRGN zidentyfikowano 64 obszary w dziale energetyka, co stanowi 17% wszystkich obszarów, tym samym wskazując na dużą wagę sektora w procesie transformacji w kierunku gospodarki niskoemisyjnej. Aż 72% obszarów z sektora energetyki dotyczy inwestycji kapitałowych, działań eksploatacyjnych i nowych praktyk. Ważną grupę stanowią także obszary dotyczące edukacji oraz zmian legislacyjnych. Wskazuje to na kompleksowość działań do podjęcia w tym sektorze, ale także na ich kapitałochłonność.
Celem programu w sektorze energetyki jest większe zdywersyfikowanie miksu energetycznego, w tym poprzez wzrost wykorzystania OZE. W ramach NPRGN, w rozbiurze na energię elektryczną i ciepło/chłód, wskazane zostaną technologie, których dalszy rozwój jest uzasadniony ekonomicznie i środowiskowo oraz takie, których wsparcie powinno zostać wstrzymane. Dalszy rozwój niskoemisyjnych technologii wytwarzania musi być powiązany z modernizacją systemu przesyłania i dystrybucji energii. Pożądane zmiany w tym obszarze dotyczą zarówno zmniejszenia strat przesyłowych, jak też takiej modernizacji sieci, aby możliwy był odbiór energii wytwarzanej w sposób rozproszony ze źródeł odnawialnych. Jednym z efektów Programu będzie rozwój energetyki prosumenckiej do maksymalnego możliwego poziomu, który nie będzie zakłócał funkcjonowania sieci przesyłowych i dystrybucyjnych. Jednocześnie NPRGN zidentyfikuje konieczne do podjęcia działania służące poprawie efektywności energetycznej oraz zmieniające świadomość społeczną w kierunku bardziej zrównoważonego wykorzystywania energii.

Ze względu na specyfikę polskiego miksu energetycznego, bardzo ważnym czynnikiem sukcesu transformacji niskoemisyjnej będzie postęp w zakresie czystych technologii węglowych. Kwestia ta zostanie szczegółowo omówiona w Polityce Energetycznej Polski do 2050.

Istotnym elementem transformacji polskiej gospodarki, w szczególności polskiego sektora elektroenergetycznego, w kierunku niskoemisyjnym jest także wdrożenie energetyki jądrowej, która jest rozwijana na podstawie przyjętego przez Rząd w styczniu 2014 r. Programu polskiej energetyki jądrowej (Program PEJ). W związku z tym, iż dokument ten w sposób szczegółowy reguluje cele, harmonogram i plan działań wykonawczych w procesie wdrażania energetyki jądrowej w Polsce, NPRGN nie porusza tych kwestii, odsyłając w tym zakresie do Programu PEJ.

Efektem realizacji programu będzie zmniejszenie oddziaływania energetyki na środowisko, w tym redukcja emisji gazów cieplarnianych, poprawa bezpieczeństwa energetycznego, rozumiana również jako powszechne dostępu do energii po osiągalnych cenach oraz poprawa szerokiej efektywności kosztowej sektora.

Teoretyczny potencjał redukcji emisji gazów cieplarnianych w obszarze energetyki (biorąc pod uwagę wyłącznie działania na rzecz poprawy infrastruktury) wynosi w 2050 roku:
- 65% względem roku 1990.

Realizacja tego teoretycznego potencjału wiązałaby się z wydatkowaniem około 710 mld złotych w latach 2010-2050. Nie wszystkie inwestycje w tym zakresie zostały ocenione jako uzasadnione kosztowo.

Dzięki działaniom zidentyfikowanym w NPRGN możliwe jest efektywne kosztowo obniżenie emisyjności branży w 2050 roku o około 27 mln ton w stosunku do scenariusza bez podjęcia interwencji (wielkość ta odpowiada około 17% wielkości emisji w 2010 roku). Potencjał ten obejmuje wyłącznie działania wskazane przez NPRGN bez odwoływania się do Polityki Energetycznej Polski do roku 2050. Łączny potencjał redukcji emisji w energetyce z uwzględnieniem Polityki Energetycznej Polski wynosi 73 mln ton ekwiwalentu dwutlenku węgla w roku 2050.

25 Materiały analityczne wykonane na potrzeby NPRGN przez WISE oraz PwC.
26 Wysokość faktycznych kosztów transformacji energetyki, jak i możliwości techniczne oraz uzyskane efekty nie są jednak możliwe do dokładniejszej oceny w tak długim horyzoncie czasowym jak rok 2050. Dotyczy to wszystkich celów szczegółowych Programu, dla których przywołuje się wyniki o charakterze symulacji makroekonomicznych.
6.1. **Priorytet A.1. Modernizacja infrastruktury krajowego systemu elektroenergetycznego**

Osiągnięcie celu Narodowego Programu w dziedzinie energii, polegającego na większej dywersyfikacji miksu energetycznego, nie będzie możliwe bez podjęcia działań w zakresie modernizacji infrastruktury systemu elektroenergetycznego. Należy przy tym pamiętać o zagrożeniach dla stabilności sieci energetycznej, dopóki nie dokonana się przełom techniczny w zakresie magazynowania energii, co będzie główną barierą dla rozwoju energetyki odnawialnej. Obecny system sieciowy powstał przy założeniu, że energia będzie przesyłana jednakierunkowo – od dużych wytwórców, przez sieć przesyłową i dystrybucyjną do odbiorcy końcowego. Oznacza to, że sieć jest dostosowana do przesyłu energii z linii o wysokim napięciu do linii o niskim napięciu. Ponadto, ponieważ polska energetyka oparta jest głównie na węglu, większość elektrowni zlokalizowana jest w południowej części kraju, a system przesyłowy dostosowany do transportu energii z południa na północ.

Obecny system nie jest samym przystosowany do nowych warunków przesyłowych związanych z intensywnie rozwijaną energetyką odnawialną. Generacja rozproszona oraz nowe lokalizacje bloków systemowych oraz średniej wielkości źródeł wytwarzanych wymuszają znaczny rozwój i modernizację infrastruktury sieciowej. Miejsce lokowania elektrowni wiatrowych (głównie region wybrzeża) oraz konieczność bilansowania systemu w skali kraju generuje konieczność rozbudowy zarówno dystrybucyjnych sieci energetycznych, jak i sieci przesyłowych, zwłaszcza w relacji północ-południe.

Analiza przeprowadzona na potrzeby Programu wskazuje na niezbędną dwutorową interwencję mającą na celu zarówno eliminację występujących niesprawności (w tym wyższych niż średnio w UE strat przesyłowych), jak i niezbędną odtwarzanie/modernizację sieci przy zastosowaniu technologii umożliwiającej przyłączenie nowych źródeł OZE oraz w sposób odzwierciedlający konieczność przesyłania energii w sposób bardziej dywersyfikowany niż w linii południe-północ. Ma to szczególne znaczenie dla rozwoju energetyki prosumenckiej, która ma szanse stać się jednym z kół zachodnich polskiej transformacji niskoemisyjnej. Dotychczasowe trendy dają podstawy do prognozowania, że coraz więcej energii będzie produkowane lokalnie, szczególnie tam, gdzie są do tego sprzyjające warunki naturalne. Produkcja energii na własne potrzeby przez przedsiębiorstwa i samorządy może być dodatkowo stymulowana przez powstanie „inteligentnej infrastruktury” (smart grids), czyli dwukierunkowych sieci, przez które energia popłynie zarówno do jak i od odbiorcy.

Obiecuje cierpieniem poprawy efektywności wykorzystania energii pierwotnej zawartej w paliwach jest wysokosprawna kogeneracja (tj. jednoczesne wytwarzanie energii elektrycznej i ciepła, zapewniające minimum 10% oszczędności paliwa w porównaniu do wytwarzania rozdzielonego w elektrowni i ciepłowni), która ma już obecnie znaczy udział w krajowym bilansie produkcji energii elektrycznej (około 17%), lecz całkowity potencjał tej technologii nie został jeszcze wykorzystany. Poza zaletami z punktu widzenia ochrony środowiska, wytwarzanie energii elektrycznej i ciepła (gorącej wody lub pary) w wysokosprawnej kogeneracji charakteryzuje się jednak nieodłączną potrzebą wsparcia finansowego. Wynika to ze stosunkowo niskiego czasu wykorzystania mocy zainstalowanej. Istnieją modyfikacje procesu kogeneracji, które zwiększają konkurencyjność tej technologii właśnie poprzez zwiększenie czasu wykorzystania mocy zainstalowanej – jest to trójgeneracja oraz poligeneracja. W trójgeneracji, w odróżnieniu od
kogeneracji, wytwarzany jest dodatkowy czynnik, którym jest chłód, a w poligeneracji poza chłodem wytwarzane są jeszcze inne produkty, np. związki chemiczne.

W związku z możliwymi do osiągnięcia oszczędnościami paliwa, docelowo wszystkie ciepłownie oparte na spalaniu paliw powinny pracować przynajmniej w układzie kogeneracyjnym, a tam gdzie jest to uzasadnione, w układzie trójgeneracji lub poligeneracji.

6.1.1. Działanie A.1.1. Modernizacja i rozbudowa krajowego systemu elektroenergetycznego dopasowana do wymagań rozwijającego się rynku OZE

W celu zrealizowania przedmiotowej modernizacji i rozbudowy systemu elektroenergetycznego pożądane jest:

- **Optymalizacja zarządzania źródłami energii w sieci dystrybucyjnej 110 kV pod kątem maksymalnego wykorzystania potencjału niskoemisyjnych źródeł energii.** Dynamiczny w ostatnich latach wzrost przyłączony do KSE energii odnawialnej, głównie źródeł wiatrowych, wymusza konieczność dostosowania metod prowadzenia ruchu systemu. Sieć 110 kV w wielu obszarach zmienia swój charakter z dystrybucyjnej na przesyłowej, co wynika także z konieczności przyjęcia do systemu elektroenergetycznego energii skupionej na obszarze generacji wiatrowej i przesłania nadwyżki bilansowej do dalszych odbiorców lub odprowadzeniu do sieci przesyłowej 220 kV/400 kV. W niektórych sytuacjach podłączenie nowych źródeł odnawialnych do sieci musi wiązać się z gruntowną przebudową sieci dystrybucyjnej. Jednak czasami alternatywą dla kosztownych modernizacji sieci jest wykorzystanie metody dynamicznej obciążalności linii (DOL) tzn. wyznaczanie rzeczywistej dopuszczalnej obciążalności linii w aktualnych warunkach pogodowych panujących na trasie linii. Bieżąca znajomość temperatury przewodów, która jest funkcją jej aktualnego obciążenia oraz warunków pogodowych otoczenia, zwłaszcza temperatury powietrza, prędkości i kierunku wiatru, pozwala na bezpieczne obciążanie linii powyżej wartości projektowej, które nie powoduje zmniejszenia normatywnych odległości przewodów od gruntu/obiektów pod linią. Działanie takie jest w niektórych sytuacjach jednym z najbardziej efektywnych sposobów zwiększenia zdolności przesyłowych linii. Maksymalne wykorzystanie niskoemisyjnych źródeł energii wymaga wiedzy, którą można pozyskać poprzez wnikliwe analizy. Proces zarządzania powinien obejmować:
 - wyznaczenie maksymalnego poziomu generacji OZE dla scenariuszy rozwoju sieci ze wskazaniem ograniczeń,
 - analizę ilościowo-jakościową liczby godzin w roku i wielkości zagrożenia przekroczenia warunków bezpiecznej pracy i wymuszonych wówczas ograniczeń generacji OZE,
 - analizę możliwości zwiększenia zdolności przesyłowych z wykorzystaniem metody dynamicznej i korzyści ekonomicznych,
 - analizę optymalnego rozmieszczenia punktów pomiarowych systemu DOL.

[UTF]27

- **Rozwój inteligentnych sieci elektroenergetycznych (smart grid) oraz inteligentnego pomiaru energii elektrycznej (smart metering),** co pozwoli zmaksymalizować stopień wykorzystania zasobów rozlokowanych w całym systemie dostarczania energii

27 Wyjaśnienie znaczenia skrótów zamieszczono na początku opracowania w sekcji: skróty.

Projekt z dnia 4 sierpnia 2015 roku
elektrycznej oraz zoptymalizować jej zużycie. Działanie poprzedzone powinno być wypracowaniem koncepcji i założeń technicznych, a systemy powinny być zaprojektowane w sposób umożliwiający przyjęcie stopniowo zwiększającej się generacji rozproszonej dołączanej do sieci z uwzględnieniem czynnika losowego związanego z wytwarzaniem energii ze źródeł wiatrowych i fotowoltaicznych. Systemy obszarowej regulacji napięcia umożliwiają także sterowanie generacją mocy biernej w elektrowniach, bateriach kondensatorów oraz mogą prowadzić regulację przekładni transformatorów NN/WN. Celem rozwoju smart grid jest zintegrowanie działań wszystkich przyłączonych do niej użytkowników – producentów, konsumentów, prosumentów w celu zapewnienia zrównoważonych, ekonomicznych i bezpiecznych dostaw energii elektrycznej. Natomiast do podstawowych korzyści inteligentnego pomiaru zaliczyć należy możliwość sterowania popytem czy ograniczenie szczytowego zapotrzebowania na energię. [T F]

- Zmiany legislacyjne dla ułatwienia prowadzenia procesu modernizacji i rozbudowy sieci energetycznych. Z uwagi na olbrzymie potrzeby inwestycyjne w infrastrukturę sieciową w Polsce, ich efektywne przeprowadzenie przez spółki dystrybucyjne wymaga m.in. ułatwień prawnych, które w znacznym stopniu spowodować mogą przyspieszenie procesu modernizacji i rozbudowy infrastruktury liniowej, jak również w znaczący sposób mogłyby ograniczyć koszty samych inwestycji. Sieci elektroenergetyczne budowane były kiedyś na gruntach nie będących własnością operatorów. Stąd brak prawa do dysponowania terenem na cele budowlane wpływa na przewlekłość procesu projektowego, czyniąc go jednocześnie bardzo kosztownym. Należy rozważyć przyjęcie specustawy drogowej, która obowiązywałaby przez określony czas, regulując przedmiotowe kwestie. [L]

6.1.2. Działanie A.1.2. Modernizacja i rozbudowa krajowego systemu elektroenergetycznego przyczyniająca się do ograniczenia strat przesyłowych

W celu zrealizowania przedmiotowej modernizacji i rozbudowy systemu elektroenergetycznego pożądane jest:

- Ograniczenie technicznych strat przesyłowych energii elektrycznej poprzez przeprowadzenie inwestycji remontowych i modernizacyjnych istniejących sieci niskiego, średniego i wysokiego napięcia. Straty sieciowe brutto (łącznie straty techniczne i różnice bilansowe) na poziomie sieci SN i NN przy obecnym stanie urządzeń sieciowych i możliwościach dystrybucyjnych, kształtują się na poziomie średnio około 8-9% energii brutto wyprowadzonej z sieci 110 kV, co stanowi około 85% wszystkich strat w krajowym systemie przesyłu energii elektrycznej. Straty w sieciach dystrybucyjnych są tym samym znacznie wyższe niż średnia unijna i stanowią wymierny uszczerbek w dochodach spółek dystrybucyjnych, jak również przekładając się na większe zużycie surowców naturalnych i niepotrzbę emisję do atmosfery gazów cieplarnianych. [F]

- Ograniczenie różnic bilansowych (kradzieży) energii elektrycznej poprzez zmianę społecznego postrzegania procederu nielegalnego poboru energii elektrycznej oraz
zmianę przepisów prawa w kierunku umożliwiającym zwiększenie skuteczności ścigania i windykacji należności. Szacuje się, że ilość energii nielegalnie pobieranej to: od 1,1 do 2,2 TWh rocznie, co oznacza wymierne straty dla firm energetycznych, ale także straty środowiskowe („darmowa” energia zużywana jest nieefektywnie ze względu na brak zachęt do oszczędności). [U L]

6.1.3. **Działanie A.1.3. Rozwój wysokosprawnej poligeneracji i kogeneracji**

Z punktu widzenia stopnia wykorzystania paliwa, a także korzyści dla środowiska, celowe jest stosowanie kogeneracji/poligeneracji wszędzie, gdzie jest to uzasadnione, tzn. gdzie istnieje jednoczesne zapotrzebowanie na energię elektryczną i ciepło/chłód.

W celu rozwoju kogeneracji (trójgeneracji) pożądane jest:

- **Opracowanie i wdrożenie długoletniego systemu wsparcia operacyjnego dla wysokosprawnej kogeneracji, zgodnego z wytycznymi Komisji Europejskiej (Wytyczne ws. pomocy państwa na ochronę środowiska i cele związane z energią w latach 2014-2020)** tak, aby nie stanowił on jednak nadmiernego wsparcia wytwórców oraz zbyt dużego obciążenia dla odbiorców końcowych. Decyzja o przedłużeniu istniejącego systemu wsparcia do końca 2018 roku weszpie jedynie doraźnie rentowność istniejących źródeł, ale jest niewystarczająca do stymulowania wieloletnich inwestycji w rozwój kogeneracji/poligeneracji. [F L]

- **Wycofanie wsparcia dla budowy kotłowni.** Biorąc pod uwagę większe zapotrzebowanie na energię elektryczną niż ciepło, nie ma ekonomicznego i środowiskowego uzasadnienia dla wspierania inwestycji jedynie w kotłownie. Każda nowa i modernizowana inwestycja w wytwarzanie ciepła ze spalania paliw powinna być przeprowadzana co najmniej w układzie kogeneracyjnym. Nie ma technicznych i ekonomicznych przeciwsiekań do wytwarzania ciepła w skojarzeniu nawet w wypadku małych i bardzo małych instalacji. [L]

- **Opracowanie systemu wsparcia inwestycyjnego dedykowanego technologii trójgeneracji,** który pozwoli na rozwój produkcji chłodu z ciepła sieciowego w dużych systemach ciepłowniczych, a tym samym obniży zapotrzebowania na moc szczytową w systemie elektroenergetycznym w sezonie letnim oraz zwiększy roczny czas wykorzystania mocy bloków energetycznych pracujących w trybie kogeneracji i trójgeneracji, tym samym poprawiając ich rentowność. [F, L]

6.2. **Priorytet A.2. Rozwój wykorzystania OZE**

Coraz większe zapotrzebowanie na energię, rosnące ceny paliw i zmniejszające się zasoby paliw kopalnych można zaliczyć to tzw. megatrendów pojawiających się w energetyce. Wywierają one nacisk na rozwój alternatywnych technologii pozyskiwania energii i nie ma racjonalnych przesłanek, jak również technicznej możliwości, aby prowadzić politykę energetyczną wbrew tym megatrendom. Ambicją NPRGN w obszarze energii jest m.in. wskazanie sposobów, które najlepiej pozwoli pogodzić specyfikę polskiej gospodarki i polskiego systemu energetycznego z wyzwaniom globalnymi, stymulując jednocześnie wzrost PKB.

Z analiz przeprowadzonych na potrzeby Programu wynika, że techniczny potencjał wytwarzania energii elektrycznej, ciepła i chłodu przy wykorzystaniu technologii OZE w Polsce znacznie przewyższa aktualne zapotrzebowanie na energię elektryczną i umożliwia ponadto zaspokojenie
większości popytu na energię cieplną i chłód. Najwyższy potencjał produkcji energii szacowany jest dla technologii w zakresie energii słonecznej i energii z wiatru. Trzeba jednak zaznaczyć, że są to technologie o stosunkowo wysokich jednostkowych kosztach produkcji energii.

Ponadto nawet w wypadku pokonania przeszkód finansowych w obecnych warunkach nie jest możliwe pełne zaspokojenie potrzeb energetycznych polskiej gospodarki jedynie źródłami odnawialnymi. Podstawowymi barierami w tym względzie wpływającymi na rozwój technologii OZE w Polsce są ograniczenia sieciowe. Mogą one zostać w jakiejs części ograniczone w wyniku rozwoju technologii magazynowania energii, wdrożeniu działań po stronie popytu (DSR) oraz dzięki odpowiednemu łączeniu różnych technologii OZE w miksie (źródł niestabilnych ze stabilnymi i elastycznymi jak biogazownie). Jednocześnie trzeba zaznaczyć, że struktura polskiego PKB, w tym duży na tle innych państw UE udział sektora energochłonnym w przemyśle, uniemożliwia oparcie miksu energetycznego głównie na energii odnawialnej.

Obecnie funkcjonujący mechanizm wsparcia przyczynił się do rozwoju odnawialnych źródeł energii, co można zobrazować przedstawiając dane dotyczące wzrostu mocy zainstalowanej tych instalacji. W 2006 r. moc zainstalowana w jednostkach wytwarzających energię elektryczną w technologii OZE na podstawie koncesji wyniosła 679 MW, podczas gdy na koniec I kwartału 2015 r. wartość ta osiągnęła 6155 MW. Rozwój OZE w Polsce przyczynił się również do dużego wzrostu kosztów funkcjonowania systemu, co w największym stopniu odczuli konsumenci energii elektrycznej. Dodatkowo, system świadectw pochodzenia stymuluje rozwój jedynie niektórych źródeł, co w konsekwencji może powodować nieoptymalne wykorzystanie lokalnie dostępnych zasobów, a także spowalniać tworzenie nowych miejsc pracy w sektorach związanych z energią odnawialną.

W zakresie ciepła/chłodu ze zdroju odnawialnych wśród najważniejszych technologii, których potencjał nie jest w wystarczającym stopniu wykorzystany wymienić należy pompę ciepła. Pompy ciepła posiadają znaczący potencjał szerokiego wykorzystania zarówno w rozwiązaniach domowych, jak i w rozwiązywaniach przemysłowych, jako uzupełniające dla innych źródeł ciepła. Jest to technologia stosunkowo niedroga i bardzo przyjazna środowisku, mogąca produkować przez cały rok zarówno ciepło, jak i chłód, a także stosunkowo trwała.

Stopień rozwoju poszczególnych technologii OZE musi być uzależniony od postępu w zakresie technologii magazynowania energii. Technologią szczególnie obiecującą (brak protestów społecznych, brak wpływu na krajobraz, możliwość budowania większych farm, większa stabilność pracy niż farm na lądzie), ale jednocześnie drogą jest budowa farm wiatrowych na morzu. W przypadku możliwości magazynowania dużych ilości energii pozyskiwanych z wiatru na morzu, ale także dzięki współpracy z krajami Morza Bałtyckiego i Morza Północnego, rozwój farm wiatrowych może istotnie przyczynić się do poprawy bezpieczeństwa energetycznego w Polsce.

Uwzględniając, że na rozwój energetyki odnawialnej wpływa szereg czynników, których nie można być pewnym w dniu dzisiejszym, w Programie, zamiast określać docelowy udział OZE w miksie energetycznym w roku 2050, zdecydowano się wskazać na te dziedziny związane z energią odnawialną, które:

- mogą być rozwijane bez szkody dla stabilności systemu energetycznego;

28 **Analiza granic rozwoju odnawialnych źródeł energii w Polsce w perspektywie roku 2050**, raport opracowany przez A.T. Kearney na zlecenie Ministerstwa Gospodarki.
ich wdrożenie jest szczególnie korzystne dla PKB;
ich wdrożenie nie wymaga nadmiernego obciążenia odbiorców końcowych.

Takie podejście do tematu ma na celu zaakcentowanie niezbędnych do podjęcia działań z punktu widzenia transformacji niskoemisyjnej w Polsce, zostawiając jednak na boku decyzję o udziale poszczególnych technologii w miksie, co będzie przedmiotem rozstrzygnięć w opracowywanej w Ministerstwie Gospodarki Polityce Energetycznej 2050.

6.2.1. Działanie A.2.1. Rozwój energetyki prosumenckiej

Istotą energetyki prosumenckiej jest wytwarzanie energii elektrycznej/ciepła głównie na własne potrzeby z dostępnych lokalnie źródeł odnawialnych. Nadwyżki wytworzonych energii mogą zostać odsprzedane do sieci, stąd wytwarzanie takiej energii (gospodarstwo domowe, firma, samorząd) staje się prosumentem (czyli jednocześnie konsumentem, i producentem). W Polsce energetyka prosumencka jest we wczesnej fazie rozwoju, jednak jej rozwój w innych krajach wskazuje, że jest to obiecujący kierunek.

Doświadczenia państw zachodnich wskazują, że zainteresowanie energetyką prosumencką motywowane jest kilkoma przyczynami:

- coraz większe uzależnienie gospodarstw domowych od elektryczności (coraz więcej urządzeń wykorzystujących prąd);
- niepewność co do cen energii w przyszłości (oczekiwaniu wzrostu cen);
- relatywnie duży koszt opłat dystrybucyjnych i innych oraz podatków w cenie energii płaconej przez odbiorców końcowych;
- coraz większa chęć do przejawiania postaw proekologicznych.

Wraz z nadrabianiem dystansu cywilizacyjnego do krajów UE, należy oczekiwać, że powyższe czynniki jeszcze silniej niż dziś będą motywować konsumentów energii w Polsce do zainteresowania się mikrogeneracją. Dodatkowym czynnikiem, który będzie miał znaczenie w Polsce są niewystarczające (w stosunku do przyszłych potrzeb) moce w całym systemie, szczególnie w przekroju regionalnym, jak również problemy z infrastrukturą przesyłową. Dziś większość elektrowni zlokalizowanych jest na południu i w centrum kraju, co oznacza, że mieszkańcy północnej i wschodniej Polski zależni są od przesyłu energii na duże odległości. Poza wynikającymi z tego stratami energii niższa jest także przewidywalność dostaw ze względu na awarie systemów przesyłowych, które wynikają czasami z przyczyn niezależnych od firm energetycznych, takich jak warunki atmosferyczne. Wyraźną korzyścią z popularyzacji energetyki prosumenckiej jest fakt wykorzystywania do produkcji zasobów zlokalizowanych na miejscu (słonce, wiatr, woda, biomasa), co zmniejsza presję na import surowców energetycznych (poprawia bezpieczeństwo energetyczne kraju). Należy także pamiętać, że następnie upowszechnienia energetyki prosumenckiej będzie rozwój przemysłu i usług, a ze względu na rozproszyony charakter tej energetyki nowe miejsca pracy nie będą powstawać jedynie w wybranych lokalizacjach (jak w wypadku dużej energetyki systemowej), ale w całym kraju.

Mimo, że z punktu widzenia całego systemu ilość energii wytworzonej w układzie prosumenckim jest dziś niezauważalna, to z czasem energetyka prosumencka może mieć widoczny udział w miksie energetycznym. Nie bez znaczenia jest tu fakt, że rozwój energetyki prosumenckiej będzie
oznaczał przejęcie przez mniejszych inwestorów części wysiłku finansowego, jaki niezbędny jest w całym sektorze energetycznym.

Należy zaznaczyć, że inwestorzy rozważający mikrogenerację kalkulują koszty odnosząc je do ceny energii w gniazdku, a nie hurtowej ceny energii (która jest punktem odniesienia dla inwestorów systemowych). Powoduje to, że technologie mniej ekonomiczne dla energetyki systemowej, takie jak fotowoltaika, stają się interesującą alternatywą dla prosumentów.

Należy oczekiwać, że wraz z modernizacją sieci w standardzie smart grid szerokie wykorzystanie dachów pod panele fotowoltaiczne (nawet gdyby każdy dach do tego się nadający został w ten sposób zagospodarowany) pozostanie bez wpływu na stabilność pracy sieci. Warto też podkreślić, że rozwój energetyki prosumenckiej zdejmuje z firm energetycznych częstych kosztów inwestycyjnych związanych z odtwarzaniem lub budową nowych mocy, co może być częściowo źródłem finansowania zwiększonych na skutek rozwoju energetyki prosumenckiej kosztów rozwoju sieci.

W celu likwidacji barier, które blokują rozwój energetyki prosumenckiej pożądane jest:

- **Upowszechnianie informacji o istnieniu oraz kosztach i korzyściach poszczególnych technologii z zakresu energetyki prosumenckiej.** Ze względu na istniejącą bariery prawne i finansowe oraz lukę informacyjną potencjalni inwestorzy nie rozważają energetyki prosumenckiej jako potencjalnie bardziej stabilnego i tańszej niż energetyka systemowa źródła energii. Brakuje również upowszechnienia metodyki szacowania przyszłego zużycia energii przez budynek/przedsiębiorstwo, co powoduje, że trudno jest sporządzić biznesryn. Z drugiej strony powszechnym problemem jest przeszacowywanie korzyści z budowy mikrogeneracji w nowopowstających obiektach. Z drugiej strony powszechnym problemem jest przeszacowywanie korzyści z budowy mikroinstalacji, co wynika z braku wiedzy o kosztach ukrytych takich jak wstrzymanie pracy przedsiębiorstwa na czas montażu instalacji, czy koszty przyłączenia do sieci lub konserwacji instalacji. [U]

- **Ocena skuteczności obecnie funkcjonującego systemu wsparcia energetyki prosumenckiej / wprowadzenie ewentualnych korekt.** Doświadczenia innych krajów pokazują, że w początkowej fazie energetyka prosumencka nie może rozwijać się bez wsparcia publicznego, jednak wraz z upowszechnianiem się technologii i spadkiem jej kosztów pomoc ta powinna być wycofywana, aby nie zakłócać funkcjonowania rynku. Celem przeglądu systemu wsparcia energetyki prosumenckiej jest weryfikacja, czy zachęty do inwestycji są na tyle wyraźne, by gwarantować stopniowe upowszechnianie się tego rozwiązania. [F]

- **Gwarancja niezmienności prawa / systemu wsparcia przez okres co najmniej 15 lat (licząc od momentu dokonania powyższego przeglądu).** Inwestycje w energetykę prosumenkę wiążą się z dość dużym poziomem ryzyka, który wynika z kosztów inwestycji oraz niepewności, co do poziomu cen energii w przyszłości. Dodatkowe ryzyko w postaci zmienności regulacji staje się często czynnikiem przesadzającym o niepodjęciu inwestycji. [L]

- **Przygotowanie regulacji gwarantującej harmonijną współistnienie energetyki centralizowanej i prosumenckiej.** Celem przedmiotowej regulacji powinno być określenie zasad korzystania ze wspólnej infrastruktury, a także podział kosztów związanych z jej konserwacją. [L]
- Stworzenie warunków dla powstawania spółdzielni energetycznych m.in. poprzez przyjęcie odpowiedniej regulacji prawnej. Ze względu m.in. na konieczność minimalizacji ryzyka inwestycyjnego oraz lepsze możliwości pozyskiwania kapitału pod inwestycje, zjawiskiem przyczyniającym się do rozwoju energetyki prosumenkowej jest tworzenie spółdzielni energetycznych. W Polsce powstała dotychczas tylko jedna taka spółdzielnia, a dla porównania w Niemczech funkcjonuje ich aż 509. Warunkiem szybkiego rozwoju spółdzielczości energetycznej jest tworzenie sprzyjających uregulowań prawnych. Rozważać warto np. zachęty podatkowe dla zakładających spółdzielnie energetyczne. Należy mieć jednak świadomość, że popularność tej formy w Niemczech wynika nie tylko z uregulowań prawnych, ale także długiej tradycji spółdzielczości w tym kraju, wysokiego poziomu partycypacji społecznej obywateli oraz wysokiej świadomości ekologicznej Niemców. Jeśli spółdzielnie energetyczne mają odegrać istotną rolę w rozwoju energetyki prosumenkowej w Polsce, oprócz zmian legislacyjnych potrzebne są działania promocyjne i uświadamiające.

6.2.2. Działanie A.2.2. Rozwój biogazowni

W celu upowszechnienia biogazowni w Polsce pożądane jest:

- Usuwanie barier społecznych utrudniających inwestycje w biogazownie rolnicze. Jedną z istotnych przeszkód w pozyskiwaniu lokalizacji pod budowę biogazowni rolniczych jest opór społeczności lokalnych, które w związku z ewentualnym funkcjonowaniem w sąsiedztwie tego typu zakładów obawiają się nadmiernego obciążenia środowiska oraz spadku wartości swoich nieruchomości. Budowa biogazowni, w tym biogazowni rolniczych, wywołuje protesty okolicznych mieszkańców, co częstokroć skutkuje przedłużeniem się procesu inwestycyjnego, a nawet jego przerwaniem. Najczęściej stanowisko społeczności lokalnych jest oparte na obiegowej wiedzy oraz doniesieniach mediowych na temat nieprawidłowości w biogazowniach lub zakładach z nimi utożsamianych.

- Recykling organiczny odpadów biodegradowalnych w celu pozyskania surowców do produkcji energii. Realizacja celu wiąże się z wykorzystaniem odpadów z produkcji w gospodarstwach rolnych i firmach trzydłych chlewnej, wydobywców oraz drobiu, osadu z oczyszczalni ścieków, z selektywną zbiorą odpadów biodegradowalnych od mieszkańców, z przemysłu rolno-spożywczego, punktów zbiorowego życia itd., które przekazywane były były do przetworzenia na materiał użytkowy (nawóz organiczny). Powstający z wydzielonej frakcji organicznej odpadów komunalnych dobrej jakości kompost nadaje się do poprawy struktury gleb i do nawiązania. Drugim produktem procesu fermentacji beztlenowej jest powstający biogaz o zawartości około 60 % metanu. Biogaz może być przeznaczony do bezpośredniego wytwarzania energii elektrycznej i cieplnej, jak i również po oczyszczeniu może być wprowadzony do sieci gazowej lub do zasilania pojazdów.

- Dobór substratów rolniczych do produkcji biogazu oraz zapewnienie ciągłości ich dostaw. Dobór substratów jest niezwykle istotnym czynnikiem wpływającym na występowanie, wielkość i rodzaj emisji. Nieprawidłowe ich dobranie będzie skutkować niekontrolowanym wydzielaniem amoniaku, którego roztwór wodny może zabijać hodowlę bakterii. W doborze substratów należy również zwrócić uwagę na takie zestawienie składu mieszaniny, aby była ona jak najbardziej efektywna pod względem produkcji CH4 oraz składu
produktu pofermentacyjnego, który w gospodarstwach rolniczych może być wykorzystany do nawożenia upraw. Ten obszar zastosowania jest wciąż niewystarczająco rozpoznany. Wymaga on przeprowadzania badań i analiz dających odpowiedź na pytanie, jaki stosunek mieszaniny będzie najbardziej efektywny dla produkcji biogazu przy jednoczesnym zachowaniu zrównoważonego składu produktu pofermentacyjnego wykorzystywanego do nawożenia oraz jakie substraty pochodzenia rolniczego mogą być wykorzystane do tworzenia tej mieszaniny przy zachowaniu jej składu produktu pofermentacyjnego wykorzystywanego do nawozów.

- Promowanie wykorzystania mikro i małych instalacji biogazowych w rolnictwie i przetworstwie rolno-spożywczym. Rezultatem powyższego będzie upowszechnienie wiedzy o dostępnych technologiach, jak również szans i korzyściach związanych z pozyskiwaniem energii z biogazu, w tym o korzyściach w postaci dodatkowych dochodów w rolnictwie i tworzenia nowych miejsc pracy.

- Wykorzystanie istniejących obiektów wodno-kanalizacyjnych na gminne biogazownie. W Polsce funkcjonuje około 4000 oczyszczalni ścieków komunalnych i przemysłowych, jednak zaledwie 70 z nich ma instalacje biogazowe (produkując biogaz z osadów ścieków). Ocenia się, że potencjał biogazowy osadów ścieków w Polsce jest wykorzystany w około 60%. Dalsze 12% potencjału (tj. 36 oczyszczalni ścieków) deklaruje uruchomienie tego procesu w perspektywie do roku 2020. W każdej z oczyszczalni powstają nadmierne osady ściekowe jako następstwo prowadzonych procesów oczyszczania ścieków. Stanowią one dobry surowiec do produkcji biogazu. Osady z oczyszczalni komunalnych zazwyczaj nie zawierają metali ciężkich i substancji toksycznych, a duża zawartość substancji organicznych daje szerokie możliwości ich beztlenowej obróbki. Z osadów ściekowych można otrzymać biogaz o dobrych właściwościach energetycznych.

- Przegląd instrumentów finansowych dedykowanych małym biogazowniom. Rozproszone system finansowego wspierania rozwoju biogazowni (fundusze strukturalne na poziomie krajowym i regionalnym, środki NFOŚiGW, Program Rozwoju Obszarów Wiejskich) powinien zostać oceniony w celu zapewnienia jego optymalizacji.

6.2.3. Działanie A.2.3. Rozwój energetyki wiatrowej na polskich obszarach morskich

Dla rozwoju energetyki wiatrowej na morzu w Polsce pożądzane jest

- Przeprowadzenie analiz w zakresie zasadności rozwoju morskich farm wiatrowych w Polsce. Potencjał teoretyczny wynikający z dostępności lokalizacji pod projekty morskich farm wiatrowych oraz warunki wietrzne i maksymalna produktywność morskich farm wiatrowych szacowana jest na 12 GW zainstalowanej mocy i 48-56 TWh energii rocznie. Potencjał rynkowy, uwzględniający uwarunkowania gospodarcze, ekonomiczne i społeczne oraz realne plany inwestycyjne to 6 GW zainstalowane do 2030 r. Celem analiz powinno być zweryfikowanie możliwości oraz zasadności wprowadzenia do systemu mocy generowanej przez 6 GW, przy uwzględnieniu specyfiki produkcji energii z wiatru oraz kosztów produkcji energii z tego źródła.
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

- W przypadku pozytywnego wyniku powyższych analiz – wprowadzenie zachęt – innych niż wynikające z istniejącego systemu wsparcia - które gwarantowałyby opłacalność inwestycji w morskie farmy wiatrowe. Ze względu na brak bezpośrednich ograniczeń przestrzennych, na morzu można stawiać większe i efektywniejsze turbiny, a także umieszczać je w mniejszej odległości od siebie, niż ma to miejsce na lądzie. Jednocześnie ryzyko wystąpienia ciszy wiatrowej jest na terenach morskich o wiele mniejsze niż na lądzie, co sprawia, że morskie farmy wiatrowe pracują dłużej i produkują więcej energii. Z drugiej strony inwestycje w farmy na morzu są droższe niż budowa farm na lądzie i kwestia tą – w wypadku obrania tego kierunku rozwoju energetyki – musi zostać odzwierciedlona w systemie wsparcia. [F]

- Rozwój morskich sieci elektroenergetycznych. Przyłączenie do KSE morskich farm wiatrowych jest uzależnione od budowy i rozwoju krajowych i międzynarodowych morskich sieci elektroenergetycznych. Rozwój sieci morskich miałby pozytywny wpływ nie tylko na funkcjonowanie morskiej energetyki wiatrowej, ale również na elektroenergetyczne transgraniczne połączenia z krajami bałtyckimi, co pozwoliłoby na zwiększenie bezpieczeństwa energetycznego, m.in. przez domknięcie pierścienia litewskiego. [F]

- Rozwój przemysłu morskiego w oparciu o energetykę. Rozwój sektora morskiej energetyki wiatrowej wiąże się ze wzrostem zapotrzebowania na szereg specjalistycznych usług produkcyjnych, transportowych, serwisowych oraz badawczych. Budowa wież elektrowni wiatrowych i fundamentów, a także specjalistycznych statków transportowych i serwisowych odbywa się w stoczniach. Już dziś polskie stocznie korzystają na rozwoju technologii wiatrowej na morzu i w innych krajach, a proces ten ma szansę istotnie przyspieszyć, gdy w podobnym kierunku zacznie się zmieniać polska energetyka. W dużych portach morskich zostaną stworzone centra logistyczne, obsługujące cały proces budowy farmy. Wokół portów i stoczni mogą powstać fabryki kabli morskich oraz innych elementów składowych farm wiatrowych. Przygotowanie i realizacja morskich farm wiatrowych to proces wieloletni (6 - 10 lat dla jednego projektu). W tym czasie powstają liczne miejsca pracy. W przypadku rozwoju MFW na polskich obszarach morskich w wielkości 6 GW, w polskich stoczniach, portach oraz przemysle morskim może powstać ok. 9 000 nowych stałych etatów. Wymagaana jest analiza słabych i mocnych stron polskiego zaplecza portowego, wskazanie pożądanych modernizacji, a także zaplanowanie i zrealizowanie niezbędnych inwestycji. Istnieje konieczność stałego unowocześniania polskich portów i stoczni na cele organizacji zaplecza logistycznego i wytwórczego dla bałtyckiego rynku morskiej energetyki wiatrowej. [U T]

6.2.4. Działanie A.2.4. Zrównoważone wykorzystanie biomasy

Biomasa jest najpopularniejszym źródłem energii odnawialnej w Polsce. W założeniu w procesach spalania i współspalania biomasy nie emituje się do atmosfery dodatkowej ilości dwutlenku węgla, ponieważ wartość wytwarzanego dwutlenku węgla bilansuje się z wartością pochłanianą przez spalane rośliny w czasie ich wzrostu. Warto jednak zaznaczyć, że proces pochłaniania CO₂ jest różny dla różnych roślin. Jednocześnie bilans wyprodukowanego dwutlenku węgla względem spalonej biomasy wyniesie zero dopiero po okresie od kilku do kilkuset lat od momentu spalenia. Oznacza to, że w krótkiej perspektywie spalanie biomasy jedynie zwiększa ilość dostarczanego do atmosfery dwutlenku węgla. Określając emisyjność spalania biomasy należy
uwzględniać emisję powstałą na skutek wszystkich procesów związanych z transportem, przetwarzaniem oraz wykorzystaniem tego źródła energii. W niektórych wypadkach oznacza to, że założenie o bezemisyjnym charakterze spalania biomasy jest niezgodne z rzeczywistością.

Okracając kryteria zrównoważonego wykorzystania biomasy, poza wspomnianą wyżej emisyjnością, należy także uwzględnić fakt, że niektóre formy biomasy mogą zostać wykorzystane na inne cele niż energetyczne, np. na cele konstrukcyjne czy do produkcji przedmiotów użytkowych. Z tych względów na cele energetyczne powinny być w większym stopniu wykorzystywane odpady biomasowe niż sama biomasa.

Okracając kryteria wsparcia dla rozwoju danych typów biomasy konieczne jest ponadto zapewnienie, by biomasa była wykorzystywana możliwie blisko miejsca wytworzenia, co redukuje emisje związane z jej transportem.

W celu bardziej zrównoważonego niż dotychczas wykorzystywania biomasy na cele energetyczne pożądane jest:

- **Odejście od współspalania.** Współspalanie biomasy z węglem zyskało szeroką popularność w Polsce na skutek obecnych regulacji prawnych, w tym wsparcia publicznego oferowanego dla tej technologii oraz z uwagi na istniejącą w Polsce strukturę wytwarzania energii elektrycznej (duże, konwencjonalne jednostki wytwórcze). Zastosowanie technologii współspalania rodzi jednak liczne negatywne konsekwencje natury środowiskowej, społecznej oraz związane z bezpieczeństwem energetycznym kraju. Co do zasady każda biomasa powinna być zagospodarowywana lokalnie, by unikać emisji związanych z transportem. Wyjątkiem od tej zasady jest spalanie biomasy w dużych wysokosprawnych instalacjach, bo wówczas emisje związane z transportem niwelowane są przez lepsza sprawność procesu spalania niż możliwa do uzyskania w małych, lokalnych instalacjach. Powyższe nie dotyczy współspalania, które ze swej istoty jest procesem o niskiej efektywności (odbija się w kotłach nieprzystosowanych do spalania biomasy). Jednocześnie współspalanie węgla z biomasą obniża żywotność kotłów energetycznych, które do takich warunków nie są przystosowane. Odejście od współspalania biomasy nie oznacza jednak rezygnacji ze współspalania odpadów biomasowych. Należy jednak podkreślić, że proces ten powinien być przeprowadzany w kotłach do tego przystosowanych.

 [L]

- **Dalsze zwiększenie wykorzystania biomasy lokalnej.** W Polsce 85% biomasy przeznaczonej na cele energetyczne pochodzi z rynku krajowego. Pozostałe 15% jest importowane głównie z kierunków wschodnich, co wiąże się z emisją dwutlenku węgla w czasie transportu. W związku z tym importowana biomasa nie może być uznana za źródło zeroemisyjne. Jednocześnie zwiększenie importu biomasy kosztem wykorzystania lokalnych surowców jest czynnikiem pogarszającym bezpieczeństwo energetyczne Polski. Zmiana w przedmiotowym obszarze musi być związana z modyfikacją systemu wsparcia. [F L]

- **Odejście od spalania drewna pełnowartościowego.** Drewno może być ważnym surowcem w procesie transformacji niskoemisyjnej, jeśli potraktuje się je jako materiał konstrukcyjny lub surowiec dla produktów użytkowych (na przykład mebli). Upowszechnienie przedmiotów codziennego użytku z drewna spowoduje, że zintensyfikuje się proces bezkosztowej sekwencji CO₂. Spalanie drewna jest zatem nieuzasadnione z ekonomicznego punktu widzenia, a dodatkowo ma negatywne skutki dla przemysłu, który musi więcej płacić za surowiec. Praktycznym nastepstwem niewystarczającej dostępności drewna na cele
nawymnienie materiałów, które nie tylko nie pochłaniają CO₂, ale ich wytworzenie wiąże się ze znaczną emisją tego gazu cieplarnianego. Inne niż drewno materiały po zakończeniu eksploatacji danego przedmiotu są ponadto odpadem o wyższych kosztach zagospodarowania. Warto zwrócić uwagę, że nawet wyłączając drewno pełnowartościowe jako źródło biomasy w dalszym ciągu wątpliwe pozostaje, czy spalenie jest optymalnym sposobem zagospodarowania pozostałości leśnych. Ten rodzaj biomasy jest na przykład dobrym surowcem dla budowy mebli z różnego rodzaju płytk. [L]

- **Nowe podejście do zagospodarowywania terenów pod biomase.** Ważnym aspektem związanym z nadmiernym wykorzystywaniem gruntów pod uprawy energetyczne jest fakt wysokiej agresywności plantacji wierzby energetycznej oraz miskanta olbrzymiego. W praktyce oznacza to bardzo trudną, bądź praktycznie niemożliwą, zmianę wykorzystania gruntu pod inne cele, w tym produkcję żywności. Uprawy miskanta olbrzymiego ukorzeniają się do 2 m w głęb gieby i są w stanie po latach zagłuszyć praktycznie każde inne uprawy. Dlatego tego typu plantacje powinny być zakładane jedynie na terenach, gdzie uprawa żywności nie jest możliwa z uwagi na niską jakość gleb lub niski plon. W innym przypadku, nadmierne wykorzystanie gruntów pod szczególnie agresywne uprawy energetyczne może skutkować poważnymi problemami dla rolników w przypadku zmiany polityki wsparcia dla upraw energetycznych bądź znacznego wzrostu konkurencyjności innych upraw roślinnych, chociaż ryzyko to jest częściowo ograniczone przez zasady Wspólnej Polityki Rolnej. Jednocześnie należy przeanalizować, czy większe korzyści gospodarcze i środowiskowe przynosi zalesianie czy zagospodarowanie terenów pod uprawy energetyczne. Rozwiązaniem tego dylematu może być uprawianie roślin, które mają zarówno potencjał energetyczny, jak i zastosowanie w budownictwie (na przykład topola szybkoskorosnąca). [U T L]

6.2.5. **Działanie A.2.5. Wykorzystanie kolektorów słonecznych do ogrzewania wody**

Rynek kolektorów słonecznych rozwija się w Polsce wciąż dość dynamicznie, chociaż w 2013 r. zainstalowano w naszym kraju mniej kolektorów (274 tys. m²) niż rok wcześniej (ponad 300 tys. m²). Jest to pierwszy spadek dynamiki rozwoju polskiego rynku kolektorów od 2000 r., czyli od momentu, od którego Instytut Energetyki Odnawialnej bada jego rozwój.

Rozwój rynku kolektorów był do tej pory napędzany przez program dopłat realizowany w latach 2010-2014 przez Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej (NFOŚiGW). W tym czasie według danych NFOŚiGW zainstalowano kolektory słoneczne w 56 tys. gospodarstw domowych, zaś przeciętny okres zwrotu z inwestycji wyniósł 4 lata, czyli był znacznie krótszy niż zakładano w założeniach programu dopłat.

Dzięki dotacjom potęgującym rozwój rynku kolektorów słonecznych z programu skorzystały nie tylko gospodarstwa domowe, ale także rodzimy wytwory tych urządzeń. Produkcja człowieowych polskich firm w dużej mierze trafia na eksport, co potwierdza konkurencyjność i jakość produkowanych w Polsce kolektorów. Można oczekiwać, że dalszy rozwój rynku kolektorów słonecznych będzie dalej stymulował rozwój nowoczesnego przemysłu i usług w branży zielonej energii.
Upowszechnienie wykorzystania kolektorów, obok powyższych korzyści gospodarczych, wiąże się z pozytywnym wpływem na stan środowiska i zdrowia społeczeństwa. Kolektory stanowią bowiem ekonomicznie interesującą alternatywę dla gospodarstw domowych, które nie są podłączone do ciepła sieciowego i energię cieplną pozyskują z przydomowych instalacji napędzanych niskiej jakości węglem lub spalonymi nielegalnie odpadami.

W przypadku gospodarstw domowych, które energię cieplną pozyskują z energii elektrycznej, wyposażenie budynku w kolektor będzie się wiązało ze znacznym ograniczeniem popytu na prąd, co w skali całego kraju przełoży się na poprawę bezpieczeństwa systemu elektroenergetycznego.

Dane o sprzedaży kolektorów za 2013 r. wskazują na możliwe spowolnienie dynamiki rozwoju rynku kolektorowego. Główną przyczyną jest zakończenie w 2014 r. programu dopłat do kredytów na montaż kolektorów z NFOŚiGW. W kolejnym programie dopłat do domowych instalacji OZE (Program „Prosument”) kolektory będą konkurować z innymi typami instalacji OZE.

Spowodowane tą zmianą spowolnienie nie musi okazać się niekorzystne dla rozwoju energetyki odnawialnej w Polsce. Firmy produkujące kolektory słoneczne mogą poszerzyć swoją działalność o produkcję paneli fotowoltaicznych. Prawdopodobny jest także dalszy spadek ceny kolektorów wymuszany przez rozwój rynku, w tym przez konkurencję ze strony tańszych urządzeń z Chin (w ostatnich latach ceny kolektorów spadły w Polsce o ¼).

Podobnie jak w wypadku paneli fotowoltaicznych upowszechnienie wykorzystania kolektorów słonecznych nie powinno napotykać na bariery administracyjne (co do zasady każdy dach – poza dachami budynków zabytkowych lub budynków, które ze względu na ścisłe określone przesłanki nie mogą zostać w ten sposób zagospodarowane – może zostać wykorzystany do instalacji kolektora słonecznego lub panelu fotowoltaicznego).

W celu dalszego wzrostu wykorzystania kolektorów słonecznych pożądane jest:

- **Utrzymanie systemu wsparcia przynajmniej do 2020 r.** Wraz z coraz większą popularnością kolektorów cena technologii spada, a producenci zyskują motywację do poprawiania jej wydajności, co w warunkach polskich – charakteryzujących się niską podażą energii słonecznej od listopada do marca – jest ważnym czynnikiem dodatkowo poprawiającym atrakcyjność tej technologii. Należy monitorować, czy wprowadzona w 2014 r. zmiana systemu wsparcia dostarcza wystarczających bodźców dla dalszego rozwoju rynku kolektorów w Polsce. [F]

- **Upowszechnienie wiedzy o korzyściach z instalowania kolektorów słonecznych.** Instalacja kolektorów słonecznych jest stosunkowo prosta i przyjazna dla środowiska, a szeroka baza firm oferujących takie rozwiązania sprawia, że zbudowanie instalacji indywidualnej dla domu jednorodzinnego stanowi koszt od kilku do kilkunastu tysięcy złotych oraz zwrot inwestycji wynoszący około 15 lat (bez dotacji). Również proces eksploatacji nie wymaga użycia obciążających dla środowiska czynników ani nie stanowi istotnych kosztów. Mimo tego kolektory słoneczne przez część społeczeństwa postrzegane są jako moda nie mająca uzasadnienia ekonomicznego. Stanowi to istotną barierę upowszechniania technologii. [U]

- **Stworzenie systemu recyklingu kolektorów słonecznych.** Systemy kolektorów mogą w perspektywie 20-30 lat generować znaczącą ilość odpadów. Jednym z rozwiązań może być recykling zużytych elementów przez firmy instalujące nowe systemy, co ma już miejsce
6.2.6. **Działanie A.2.6. Upowszechnienie wykorzystania pomp ciepła i gruntowych wymienników ciepła do celów grzewczych**

Podobnie jak w wypadku kolektorów słonecznych, wzrost na rynku pomp ciepła będzie stymulował rozwój nowoczesnych gałęzi przemysłu i usług w Polsce. Z punktu widzenia szerszego wykorzystania pomp ciepła i gruntowych wymienników ciepła dla celów grzewczych pożądane jest:

- **Monitorowanie jakości instalowanych dotychczas pomp ciepła.** Przedmiotowy monitoring przeprowadzony w innych krajach (Niemcy, Francja, Austria) wykazywał w przeszłości, że ze względu na błędy w instalacji montowane pompy ciepła nie spełniają norm, które zostały dla nich przewidziane. Celem monitoringu powinno być wyeliminowanie firm niemających kompetencji do instalowania pomp ciepła, gdyż na młodym rynku, jakim jest Polska, niski standard usług instalacyjnych może zahamować rozwój tej gałęzi gospodarki. Należy także wspierać organizowanie przez stowarzyszenia branżowe producentów pomp kursów dla instalatorów lub wprowadzenie egzaminów poświadczających kwalifikacje warunkujące uzyskanie certyfikatu. Dobrym kierunkiem jest wprowadzenie w ustawie z dnia 20 lutego 2015 r. o odnawialnych źródłach energii dobrowolnego systemu certyfikacji instalatorów pomp ciepła, jednak zasadnym byłoby, aby taki system powinien być powszechny i obowiązkowy.

- **Upowszechnienie wiedzy o korzyściach z instalowania pomp ciepła w powiązaniu z przekazywaniem informacji o właściwej eksploatacji zainstalowanych pomp.** Pożądanym środkiem do osiągnięcia efektów w tej dziedzinie są ogólnopolskie i lokalne kampanie informacyjne.

- **Przegląd istniejącej legislacji dotyczącej pomp ciepła w celu stworzenia stabilnych ram prawnych dla rozwoju tego rynku.** Rozporządzenie Ministra Gospodarki z dnia 4 kwietnia 2014 r. w sprawie sposobu obliczania końcowego zużycia energii brutto ze źródeł odnawialnych oraz sposobu obliczania ilości energii elektrycznej i ciepła z takich źródeł jest pierwszym dokumentem w prawie polskim, według którego znaczna część ciepła przekazywanego przez pompy ciepła pochodzi ze źródeł odnawialnych. Opublikowany dokument został dobrze przyjęty przez branżę i oceniony jako bardzo silny i jednoznaczny impuls dla rozwoju polskiego rynku pomp ciepła. Istotne, w opinii branży, pozostają jednak inne bariery rozwoju rynku pomp ciepła takie jak: częste zmiany prawa (także na poziomie unijnym), brak jednolitych wytycznych co do warunków technicznych pomp ciepła dopuszczonych do obrotu w Polsce oraz opóźnienia w implementacji unijnego prawa dotyczącego pomp ciepła skutkujące brakiem odpowiednich rozporządzeń.

- **Przegląd instrumentów wsparcia (innych niż wynikające z ustawy o OZE).** Celem przeglądu będzie ocenienie, w którym kierunku należy zmodyfikować instrumenty wsparcia, aby miały one charakter systemowy. Instrumenty wsparcia są obecnie rozdrobnione i brak jest wspólnych kryteriów kwalifikacji instalacji do wsparcia.
Stworzenie otoczenia naukowego zaangażowanego w rozwój pomp ciepła. Jedną z istotnych barier rozwoju pomp ciepła w Polsce jest brak programów naukowych badających realną efektywność pomp (pomiar współczynnika SPF). Ponadto potencjał współpracy biznesu i naukowców zaangażowanych w tematykę pomp ciepła nie jest wykorzystywany. Brakuje także certyfikowanego instytutu wyspecjalizowanego w tym zakresie. Niewystarczająca jest również liczebność dobrze wykwalifikowanej kadry naukowej. W związku z tym należy rozważyć utworzenie odpowiedniego kierunku studiów na wybranych uczelniach technicznych. [U'T]

6.3. Priorytet A.3 Upowszechnienie alternatywnych, innych niż odnawialne, metod pozyskiwania energii

Do najbardziej obiecalnych alternatywnych (innych niż odnawialne) metod pozyskiwania energii należy zaliczyć pozyskiwanie energii z odpadów, energetyczne zagospodarowanie metanu oraz odzyskiwanie ciepła resztkowego.

Wytwarzanie energii z odpadów można podzielić na technologie bezpośredniego ich spalania oraz inne metody termicznego przekształcania takie jak piroliza, zgazowanie odpadów, czy plazmowa technologia przekształcania odpadów. Zgodnie z ramową dyrektywą w sprawie odpadów warunkiem koniecznym zaliczenia spalania odpadów w spalarni do procesów odzysku (a nie unieszkodliwiania) jest osiągnięcie przez spalarnię określonej wartości tzw. wskaźnika efektywności energetycznej (dla nowych instalacji powyżej 0,65). Wszystkie nowe spalarnie odpadów uzyskują ten wskaźnik na poziomie 0,75-1,2. W świetle posiadanych danych zarówno technologia pirolityczna, jak i plazmowa oraz metoda zgazowania nie osiągają takich wskaźników efektywności jakie charakteryzują bezpośrednie spalenie odpadów (wsparcze wynosi tu około 0,6). Z powyższych powodów wysiłki powinny zostać skoncentrowane na upowszechnieniu spalania odpadów, a działania na rzecz innych metod termicznego przekształcania powinny mieć charakter dodatkowy i dotyczyć głównie poprawy efektywności dostępnych technologii.

Odrębną metodą energetycznego zagospodarowania odpadów podlegających biodegradacji jest fermentacja metanowa (wykorzystywana w biogazowniach), która posiada ograniczony potencjał rozwoju w skali kraju, jednak jest bardzo atrakcyjna lokalnie (została omówiona w działaniu A.2.2.).

W spalarniach odpadów wykorzystuje się zarówno odpady komunalne, jak i przemysłowe oraz rolnicze. Należy zaznaczyć, że dla technologii spalania odpadów ilość surowca nadającego się do spalenia jest wystarczająco duża, aby możliwe było dalsze, długookresowe rozwijanie tej technologii w Polsce.

Spalanie odpadów jest jedną z ważnych technologii krajowego planu gospodarki odpadami, bo umożliwia zmniejszenie ilości odpadów kierowanych na składowiska. Budowę zakładów termicznej obróbki odpadów do pewnego stopnia wymusi przepis zakładowy o od 1 stycznia 2016 r. zakaz składowania wysokokalorycznych odpadów (w tym osadów ścieków i odpadów komunalnych), z których może zostać wytworzona energia elektryczna i ciepło. Oznacza to, że wszystkie frakcje palne odpadów o wartości opałowej powyżej 6 MJ/kg nie będą mogły być deponowane na składowiskach – muszą być albo poddane recyklingowi albo odzyskowi.
Metoda pozyskiwania energii poprzez spalanie odpadów napotyka obecnie na kilka barier. Jedną z nich są istniejące, bardzo wysokie wymogi dla budujących spalarnie, wynikające z potrzeby spalania odpadów w sposób przyjazny ludziom i środowisku, co podnosi jednak koszty inwestycyjne. Innym ograniczeniem jest silny opór ze strony lokalnej społeczności w czasie budowy spalarni odpadów, związany z obawami przed dodatkowymi zanieczyszczeniami czy uciążliwymi zapachami powstającymi w procesie spalania.

Działania w obszarze pozyskiwania energii z odpadów powinny być nakierowane nie na spalenie strumienia odpadów komunalnych, ale na rozwój instalacji mechaniczno-biologicznej obróbki odpadów, które będą produkowały dedykowane do spalenia wysokokaloryczne paliwo alternatywne z odpadów komunalnych bądź odpadów pozostałych po selekcyjnej zbiórce, które nie będą spełniały parametrów do skierowania do recyklingu. Najlepszą alternatywą dla składowania odpadów nie jest zatem ich proste spalenie, ale optymalizacji procesu zbiórki i przetwarzania odpadów tak, aby frakcje które nie będą mogły zostać poddane recyklingowi a są wysokokaloryczne zostały wyekstrahowane z całego strumienia odpadów, a następnie poddane spaleniu.

Spalarnie odpadów uznawane są za dobre rozwiązanie dla terenów wielkich aglomeracji miejskich, gdzie generowane są duże strumienie odpadów, zaś odbiór energii, a zwłaszcza ciepła, jest łatwiejszy. Oprócz zmniejszenia strumienia odpadów kierowanych do składowania zaletą takiego sposobu zagospodarowania odpadów jest fakt, że produkty uboczne spalania – żuże i popioły – mogą być wykorzystywane w budownictwie, chociaż ze względu na metale ciężkie zawarte w żużach muszą być one uprzednio poddane immobilizacji.

Innym alternatywnym źródłem energii elektrycznej jest metan związany z prowadzeniem działalności górniczej (metan jako źródło biogazu został omówiony oddzielnie w punkcie A.2.2).

Można go pozyskiwać poprzez odmetanowywanie pokładów węgla w kopalniach węgla kamiennego oraz poprzez odkrywanie metanu zawartego w powietrzu wentylacyjnym, a także poprzez odmetanowanie nieeksploatowanych jeszcze pokładów węgla kamiennego. Biorąc pod uwagę skalę działalności górniczej w Polsce, metan należy traktować jako ważny składnik polskiego mieszaniny energetycznej.

Obecnie w polskim górnictwie węgla kamiennego podczas eksploatacji węgla kamiennego uwalnia się rocznie około 850 mln m³ metanu, z czego ok. 570 mln m³ drogą wentylacyjną dostaje się do atmosfery, a blisko 280 mln m³ ujmowane jest poprzez instalacje odmetanowania kopalń (dane za rok 2013). Około 68% ujmowanego metanu jest wykorzystywana gospodarczo, co oznacza ponad 20% wzrost gospodarczego wykorzystania wychwyconego metanu na przestrzeni ostatnich 5 lat. Niestety nadal znaczną jego część (mimo ujęcia) wypuszczała jest do atmosfery (w roku 2013 było to ok. 90 mln m³). Z danych Wyższego Urzędu Górniczego wynika, że mimo malejącej liczby kopalń i ilości wydobywanego węgla ilość metanu wydzielającego się przy wydobyciu węgla w polskich kopalniach stale rośnie. Metanu przybywa m.in. dlatego, że wydobycie prowadzone jest coraz głębiej (rocznie średnia głębokość wydobycia zwiększa się o ok. 6-8 m). Barierą dla szerszego wykorzystywania metanu w energetyce przestaje być stopniowo niedojrzałość technologii. Od dłuższego czasu nie ma technicznych ograniczeń dla odmetanowania kopalń – proces ten jest dobrze rozpoznany i wdrażany w polskich warunkach. Również wychwytywanie metanu z powietrza wentylacyjnego na skalę przemysłową jest już dziś technicznie możliwe, co zostało udowodnione na kilku kontynentach (przede wszystkim w Australii, Chinach i USA).
Aby ułatwić wybudowanie w Polsce pierwszej pilotowej instalacji na skalę przemysłową, która zademonstrowałaby skuteczne działanie ww. technologii, niezbędne jest utworzenie systemu wsparcia (wściśle współpracy z partnerami z sektora górniczego) gwarantującego ekonomicznie opłacalne zagospodarowanie pozyskanego w ten sposób metanu. Powyższe stworzyłoby również sprzyjające warunki dla implementacji w Polsce znanej i powszechnie wykorzystywanej w USA technologii odmetanowywania żół. Odmetanowanie żół nie tylko pozwoli pozyskać cenny surowiec energetyczny, ale także będzie mieć bezpośrednie przełożenie na bezpieczeństwo pracy górników, jeśli w przyszłości podejmie się decyzję o wydobywaniu węgla z danego żół.

Biorąc pod uwagę, że ok. 80% węgla kamiennego w Polsce pochodzi ze złóż metanowych, jak również fakt, że efekt cieplarniany metanu jest 21 razy większy niż CO2, należy zaznaczyć, że umiejętnie włączenie kwestii metanu w proces transformacji niskoemisyjnej może uczynić z tego gazu ważny surowiec w polskim mikście energetycznym, jednocześnie przyczyniając się do istotnej redukcji CO2 w naszym kraju. Energetyczne wykorzystanie metanu jest przykładem aktywności nie tylko korzystnej środowiskowo, ale także gospodarczo (wartość opałowa metanu jest ponad dwukrotnie wyższa niż węgla) i społecznie (poprawa bezpieczeństwa pracy górników).

Wśród alternatywnych metod pozyskiwania energii należy wymienić także wykorzystanie tzw. ciepła odpadowego, czyli ciepła niewykorzystanego w procesie i oddanego do otoczenia. Duże ilości ciepła odpadowego powstają w przemyśle petrochemicznym, hutniczym i cementowym, ale także w sektorze transportu (ciepło wytwarzane przez silniki pojazdów) czy rolnictwie. Co do zasady odzysku ciepła przyczynia się do poprawy efektywności energetycznej procesów, obniża ich koszty, a tym samym jest inwestycją opłacalną z ekonomicznego punktu widzenia nawet bez dedykowanych mechanizmów wsparcia.

W ramach priorytetu zaproponowano także działania dla rozwoju wykorzystania paliw alternatywnych, które wraz ze wzrostem cen surowców energetycznych, będą stawać się coraz atrakcyjniejszym źródłem energii, a w niektórych sektorach np. w cementskiej już dziś są istotnym składnikiem miksu energetycznego w wielu instalacjach.

6.3.1. **Działanie A.3.1. Upowszechnienie spalania i współspalania odpadów**

Dla upowszechnienia spalania lub współspalania odpadów pożądane jest:

- **Dokonanie przeglądu istniejącej legislacji w celu identyfikacji i eliminacji ewentualnych nadmiernych wymagań dla budujących i eksploatujących spalarnie odpadów.** Istotnym ograniczeniem dla tworzenia nowych spalarni są restrykcyjne uregulowania prawne, zwłaszcza w zakresie zabezpieczania substancji niebezpiecznych w żużlu i pyłach oraz ściekach, które pozostają po procesie chłodzenia żużlu oraz gazów wytłoczkowych. Tak rygorystyczne wymogi formalne dla spalarni odpadów wymuszają budowę zaawansowanych, a co za tym idzie drogich, systemów oczyszczania. Koszty urządzeń oczyszczających już obecnie przewyższają koszty pozostałych urządzeń spalarnych. Przewiduje się, że będą one stanowiły jeszcze większą część kosztów w przyszłości. Należy dokonać przeglądu istniejącej regulacji, w tym na poziomie UE, w celu eliminacji ewentualnych nadmiernych obowiązków, jednak ze świadomością, że nie jest możliwe radykalne obniżenie standardów dla spalarni ze względów bezpieczeństwa, społecznych oraz środowiskowych. [L]
- Upowszechnienie wiedzy o korzyściach i negatywnych skutkach budowy spalarni wśród społeczności lokalnych. Opór mieszkańców przed lokalizacją nowych inwestycji spalarniowych na terenie ich miejscowości jest często pochodną obaw przed pogorszeniem warunków życia. Warto jednak zaznaczyć, że obecny rozwój technologii pozwala na lokalizowanie spalarni nawet na terenach dużych aglomeracji, a tym bardziej w niedużym oddaleniu od obszarów zamieszkanych bez szkody dla zdrowia i komfortu życia mieszkańców. Upowszechnienie wiedzy w tym zakresie może zmniejszyć opór lokalnych społeczności, a tym samym przyspieszyć proces inwestycyjny. [U]

- Określenie wytycznych do kierowania odpadów do recyklingu lub spalarni. Rozwój spalarni w Polsce musi być stymulowany w sposób zrównoważony, gdy w dużej części spalarnie konkurują o odpady z przemysłem recyklingowym. Odzysk surowca jest dużo bardziej przyjazny dla środowiska niż jego spalenie. Jednocześnie potrzebna jest analiza zasadności lokalizowania w Polsce dodatkowych spalarni odpadów komunalnych (poza instalacje znajdujące się w budowie oraz na etapie przygotowania inwestycji) w kontekście dostępnej w przyszłości ilości możliwych do zagospodarowania odpadów. Analiza powinna uwzględniać zwiększające się wskaźniki dotyczące wymaganego poziomu recyklingu odpadów, konkurowanie spalarni z instalacjami do mechaniczno-biologicznego przerobu oraz prowadzoną politykę UE zmierzającą do ograniczenia powstawania odpadów jako takich. Może to w perspektywie średniookresowej doprowadzić do sytuacji niedoboru odpadów komunalnych, które będą mogły być przeznaczone do spalenia. [U T]

6.3.2. Działanie A.3.2. Wzrost wykorzystania metanu na cele energetyczne

Dla uzyskania wzrostu wykorzystania metanu na cele energetyczne pożądane są:

- Identyfikacja istniejących zasobów metanu, które mogą zostać odzyskane/poszkane na cele energetyczne. Określenie poziomu złoża metanu, zwłaszcza zawartego w nieeksploatowanych pokładach węgla, pozwoli określić perspektywy opierania pewnej części miksu energetycznego Polski na energetycznym zagospodarowaniu metanu. [T]

- Wdrożenie na szeroką skalę technologii odmetanowywania złoża. Istnieją skuteczne technologie odmetanowywania złoża, szeroko wykorzystywane np. w USA. W polskich warunkach, między innymi na skutek braku odpowiedniego systemu wsparcia dla produkcji energii z metanu, technologie te nie są wdrażane. Należy uaktualnić „Analizę skuteczności systemu wsparcia wytwarzania energii elektrycznej z metanu" opracowaną w 2012 r. i zgodnie z jej wynikami zaproponować modyfikację systemu wsparcia. [F L]

- Wdrożenie na szeroką skalę technologii wychwytywania metanu z powietrza wentylacyjnego. Metan z powietrza wentylacyjnego ma znaczący udział w emisji metanu z kopalń do atmosfery. Systematyczne zmniejszanie uwalnianego tą drogą metanu może przyczynić się do istotnego ograniczenia negatywnego wpływu działalności górnicej na środowisko, jednocześnie dostarczając gospodarce cennego surowca energetycznego. Wychwytywanie metanu z powietrza wentylacyjnego jest już dziś technicznie możliwe, jednak ze względu na brak wystarczającego systemu wsparcia, przemysłowe wdrożenie tej technologii nie jest opłacalne. Należy uaktualnić „Analizę skuteczności systemu wsparcia wytwarzania
energii elektrycznej z metanu" opracowaną w 2012 r. i zgodnie z jej wynikami zaproponować modyfikację systemu wsparcia. [F L]

- **Przegląd istniejącego systemu wsparcia dla produkcji energii z metanu.** Obecny system wsparcia dla produkcji energii z metanu opiera się na tzw. fioletowych certyfikatach. Mogą otrzymać je firmy łączące produkcję energii elektrycznej z produkcją energii cieplnej w elektrowni „opalanej metanem uwalnianym i ujmowanym przy dołowych robotach górniczych w czynnych, likwidowanych lub zlikwidowanych kopalniach węgla kamiennego lub gazem uzyskiwanym z przetwarzania biomasy”. W ramach przeglądu należy ocenić, czy istniejący system dostarcza wystarczających zachęt dla pozyskiwania metanu na cele energetyczne. Dla przykładu, spółki węglowe wykorzystują gospodarczo ok. 68% odzyskanego metanu. Czynnikiem zwiększającym stopień wykorzystania tego metanu byłoby stworzenie trwałego popytu na niego, co mogłoby zostać zapewnione poprzez efektywny system wsparcia dla wytwarzania energii z metanu. Należy dążyć do pełnego wykorzystania metanu z odmetanowywania kopalń. Dodatkowo, ze względu na postęp w zakresie technologii odmetanowywania złóż, należy systemem wsparcia objąć również metan z tego źródła. [F L]

6.3.3. Działanie A.3.3. Efektywniejsze gospodarowanie ciepłem odpadowym

W celu efektywniejszego gospodarowania ciepłem odpadowym pożądane są:

- **Upowszechnienie wiedzy o dostępnych technologiach odzysku ciepła w przemyśle.** Dla przykładu – przeprowadzenie przeróbki plastycznej stali (np. walcowanie, kucie) oraz obróbki cieplnej (np. wyżarzanie) wiąże się z podgrzaniem do odpowiedniej temperatury, co jest realizowane w piecach grzewczych opalanych najczęściej gazem ziemnym. Powstające spaliny, charakteryzujące się wysoką temperaturą, są chłodzone przed wypuszczeniem do atmosfery. Odzyskane ciepło z ich chłodzenia można by wykorzystać, co poprawiłoby efektywność energetyczną przedsiębiorstwa. Mimo tego nie wszystkie instalacje wyposażone są w narzędzia do odzysku ciepła. Dla upowszechnienia tego procesu pożądane jest przeprowadzenie akcji informacyjnych przez organizacje branżowe o korzyściach tego rozwiązania, jak również stworzenie sektorowych list dobrych praktyk wykorzystywanych w innych krajach. [U]

- **Upowszechnienie odzysku ciepła w rolnictwie.** W produkcji rolnej notuje się wzrost energochłonności, ale jednocześnie dużo energii, a szczególnie ciepła, jest marnowana. Istnieje wiele szczegółowo rozpoznanych procesów, które poprawiają odzysk ciepła w rolnictwie, jednak wiedza o takich możliwościach nie jest wśród rolników powszechna. W związku z tym należy wykorzystać dobrze rozwiniętą sieć punktów informacji rolniczej w celu popularyzacji metod umożliwiających odzysk ciepła w rolnictwie. Jednocześnie w ramach środków finansowych na rozwój wsi należy promować rozwiązania, których efektem ubocznym jest poprawa efektywności energetycznej. [U F]
6.3.4. **Działanie A.3.4. Zwiększenie stopnia wykorzystania paliw alternatywnych**

W celu zwiększenia stopnia wykorzystania paliw alternatywnych pożądane są:

- **Upowszechnienie wiedzy o możliwości stosowania paliw alternatywnych w przemyśle.** W związku z rosnącymi cenami surowców oraz wymogami ochrony środowiska coraz atrakcyjniejszym źródłem energii na potrzeby procesów produkcyjnych mogą być tzw. paliwa alternatywne, zastępujące tradycyjnie wykorzystywany węgiel czy gaz. Paliwa takie uzyskuje się z przetworzonych odpadów przemysłowych i komunalnych (np. zawierających gumę, papier i tworzywa sztuczne), z wysuszonych osadów ściekowych, opon oraz z mączki kostno-zwierzęcej. Dobrym przykładem skutecznego zastąpienia paliwa tradycyjnego poprzez spalanie strumienia odpadów jest sektor cementu, w którym paliwo alternatywne systematycznie zastępuje węgiel w piecach obrotowych do wypalania klinkieru. Dzisiaj średnio 70% energii w europejskiej branży cementowej pochodzi z paliw alternatywnych. Mając na względzie zwiększającą się ilość odpadów i rosnące ceny paliw tradycyjnych, upowszechnienie paliw alternatywnych może być skutecznym rozwiązaniem nie tylko w sektorze cementu. Żeby tak się stało, potrzebne jest stworzenie zachęt do działalności badawczo-rozwojowej, której efektem będzie zidentyfikowanie technicznych możliwości stosowania na dużą skalę paliw alternatywnych w poszczególnych rodzajach działalności produkcyjnej. [U]

- **Zwiększenie podaży odpadów dostępnych do przetworzenia na paliwa alternatywne poprzez poprawę jakości procesu zbiórki odpadów.** Dziś za jedną z głównych barier upowszechnienia paliw alternatywnych uznawana jest niewystarczająca ilość surowca nadająca się do zagospodarowania w ten sposób. [U]
7. Cel szczegółowy B: Poprawa efektywności gospodarowania surowcami i materiałami, w tym odpadami

Cel dotyczący poprawy efektywności gospodarowania surowcami i materiałami wpisuje się w szersze zagadnienie związané z zapewnieniem bezpieczeństwa surowcowego. Jest ono niezwykle istotne m.in. ze względu na gwałtowny wzrost zapotrzebowania na surowce obecnie, jak również w przyszłości, przy jednoczesnym zmniejszeniu możliwych do eksploatacji zasobów. Ceny surowców nieenergetycznych w I dekadzie XXI wieku uległy potrojeniu, co spowodowane jest m.in. gwałtownym wzrostem gospodarek wschodzących, głównie Chin, Indii i Brazylii. Towarzyszy temu coraz bardziej utrudniony dostęp do surowców, w tym metali rzadkich i innych pierwiastków, które mają duże znaczenie dla rozwoju branż zaawansowanych technologicznie. Rosnące uzależnienie od importu wielu surowców nieenergetycznych (tak Polski, jak i innych państw UE) wymaga podjęcia działań w zakresie zapewnienia dostępu do nich w skali globalnej, europejskiej i lokalnej.

Dostęp do surowców mineralnych oraz możliwość ich wykorzystania obecnie i w przyszłości jest także podstawowym warunkiem równoważnego rozwoju kraju. Z kolei zachowanie równowagi środowiskowej będzie wymagało umiaru w eksploatacji zasobów, planowania eksploatacji surowców zgodnie z prawami przyrody i zasadami postępowania z zasobami naturalnymi oraz kontroliowania zasad przestrzegania ochrony surowców przez wyspecjalizowane organizacje. Podejście to odzwierciedla m.in. obowiązująca legislacja dotycząca odpadów, która przewiduje hierarchię sposobów postępowania z odpadami. Najwyżej stawia ona zapobieganie powstawaniu odpadów, następnie przekazanie do ponownego użycia, recyclingu, inne formy odzysku, a dopiero w ostateczności unieszkodliwienie. W Polsce większość odpadów komunalnych jest obecnie deponowana na składowiskach. Jest to sytuacja niekorzystna, zarówno pod względem gospodarczym – marnotrawstwo cennych surowców energetycznych i nieenergetycznych – jak i realizacji celów ochrony środowiska. Z ok. 10 mln ton odpadów komunalnych wytwarzanych rocznie w Polsce 96,6% trafia na składowiska (929 składowisk na powierzchni 3086 ha), 2,9% poddawana jest recyklingowi organicznemu (głównie kompostowanie), a zaledwie 0,43% – termiczemu przekształceniu. Pod względem poziomu odzyskiwania surowców wtórnym z odpadów Polska płaszuje się na jednym z ostatnich miejsc wśród krajów Europy.

Obecnie w Polsce na jednego mieszkańca przypada rocznie 0,3 tony odpadów komunalnych, które – przy zmianie sposobów ich zagospodarowania – mogą w większym stopniu być wykorzystywane jako surowce energetyczne i nieenergetyczne.

Ograniczoność zasobów naturalnych stanowi poważny problem przede wszystkim ze względów gospodarczych. Oprócz wzmiankowanych kwestii dotyczących odpadów, duże znaczenie dla zwiększania konkurencyjności gospodarczej mają procesy doskonalenia technologii pozyskiwania zasobów pierwotnych oraz optymalizacja procesów ich eksploatacji, co prowadzi do zwiększenia efektywności wykorzystania posiadań surowców.

W ramach prac nad Programem zidentyfikowano 37 obszarów dot. surowców, co stanowi 10% wszystkich obszarów. Około 45% zidentyfikowanych obszarów stanowią inwestycje oraz działania eksploatacyjne (po 22,5%). Znaczna część obszarów (14%) dotyczy także zmiany zachowań konsumenckich.
Celem Programu w zakresie poprawy efektywności gospodarowania surowcami jest poprawa efektywności wykorzystania surowców, wsparcie ponownego zagospodarowania odpadów oraz wypracowanie standardów dla wykorzystania produktów ubocznych.

W ramach poprawy efektywności gospodarowania surowcami konieczne jest uwzględnienie procesów, które odbywają się zarówno na etapie pozyskiwania i wstępnej obróbki surowców, jak i wykorzystania ich na dalszych etapach tworzenia wartości dodanej. Poprawa efektywności wymaga często wdrożenia nowoczesnych technologii stosowanych przy wydobyciu i w przetwórstwie, dających większe możliwości (np. głębiej położone depozyty), z redukcją negatywnego oddziaływania na środowisko przyrodnicze. Nie będzie to możliwe bez podnoszenia świadomości nt. stosowania nowych technologii czy dobrych praktyk.

Warte zauważenia jest, że kwestia efektywnego wykorzystania surowców dotyczy zarówno procesów mających na celu ograniczanie strat szeroko pojętych zasobów na etapie wydobycia i wstępnej obróbki, jak i zachęcanie do optymalizacji pod tym względem procesów na dalszym etapie łańcucha tworzenia wartości dodanej. Podczas gdy optymalizacja ta dotyczy praktycznie wszystkich sektorów gospodarki, dostrzec należy ich zróżnicowany potencjał do jej przeprowadzenia, który znajduje odzwierciedlenie w dalszej opisanych działaniach (w szczególności w ramach priorytetu „Promocja optymalnego wykorzystywania surowców”).

Szczegółowe miejsce w procesach dotyczących optymalizacji wykorzystania zasobów zajmuje kwestia odpadów. Aby w pełni realizować cel gospodarczy, przy uwzględnieniu ograniczeń środowiskowych, niezbędna jest budowa odpowiedniej, nowoczesnej infrastruktury. Powinna ona umożliwić zagospodarowanie odpadów w sposób pozwalający na jak najbardziej efektywne wykorzystanie surowców pochodzących z odpadów. Dotyczy to zarówno surowców energetycznych, które w procesach odzysku mogą być paliwem do produkcji energii, jak i nieenergetycznych, które w szczególności poprzez recykling mogą przyczynić się do zwiększenia dostępności surowców dla polskiej gospodarki.

Poprawy efektywności gospodarowania odpadami nie osiągnie się bez odpowiedniego zaangażowania społeczeństwa. Selektywna zbiórka odpadów prowadzi do pozyskiwania surowców wtórnych charakteryzujących się lepszymi parametrami. Natomiast działania związane z zapobieganiem powstawaniu odpadów poprzez zmianę zachowania związanego ze stylem życia przyczynią się do ograniczenia ilości surowców wtórnych. Docelowo, odpad – jeżeli w ogóle będzie generowany – stanie się produktem, który będzie miał wartość materialną, w przeciwieństwie do stanu obecnego, kiedy jest czymś zbędnym, za zagospodarowanie czego trzeba zapłacić.

Jakościowa zmiana w podejściu do gospodarki odpadami w Polsce w kolejnych dekadach przełoży się na znaczący spadek emisji gazów cieplarnianych. Należy jednak podkreślić, że całkowity pozytywny efekt środowiskowy ograniczenia ilości odpadów deponowanych na składowiskach będzie ujawniać się stopniowo, wraz z zanikiem emisji z odpadów już zalegających na polskich składowiskach.
Teoretyczny potencjał redukcji emisji gazów cieplarnianych (biorąc pod uwagę stan infrastruktury technicznej) w sektorze odpadów wynosi w 2050 roku:
- 58% względem roku 1990.\(^{29}\)

Dzięki działaniom zidentyfikowanym w NPRGN możliwe jest obniżenie emisyjności o około 3 mln ton w roku 2050 w porównaniu do scenariusza bez podjęcia interwencji (wielkość ta stanowi około 37% emisji z odpadów generowanych w 2010 roku).\(^{30}\)

Szacuje się, że koszty podjęcia interwencji w okresie 2010-2050 wyniosą około 1,2 mld złotych.

7.1. **Priorytet B.1 Promocja optymalnego wykorzystywania surowców**

Działania w ramach tego priorytetu dotyczą przede wszystkim rozwoju i doskonalenia technologii oraz upowszechniania dobrych praktyk w zakresie:

- pozyskiwania oraz wstępnej obróbki surowców,
- poprawy efektywności wykorzystywania surowców.

Sposób pozyskania i obróbki surowców wpływa na poziom emisyjności całej gospodarki, a tym samym na ślady węglowe produktów wytwarzonych z ich wykorzystaniem. Wiele barier dla optymalnego wykorzystywania surowców jest możliwych do pokonania poprzez zastosowanie odpowiednich niskoemisyjnych technologii (np. wydobywczych – pozwalając wykorzystać dotychczas niedostępne surowce). Z kolei wypracowanie takich technologii jest możliwe np. dzięki wspieraniu badań nad rozwijaniem technologii, które pomagają zwiększyć efektywność gospodarowania zasobami, niekiedy także w inny sposób korzystnie oddziałując na środowisko. Niemniej jednak posiadanie technologii musi łączyć się ze stosownym know-how i formacją zachowań społecznych. Stąd istotne miejsce wśród proponowanych działań zajmują także przedsięwzięcia w zakresie podnoszenia świadomości nt. sposobów wykorzystania nowych technologii czy dobrych praktyk (np. w zakresie zapobiegania nielegalnej eksploatacji surowców).

Warta zauważyenia jest możliwość rozwoju w niektórych przypadkach pokrewnych gałęzi przemysłu, np. przy upowszechnianiu drewna jako materiału konstrukcyjnego (prowadzące m.in. do rozwoju przemysłu obróbki drewna).

7.1.1. **Działanie B.1.1. Doskonalenie technologii pozyskiwania i wstępnej obróbki surowców**

Proponowane przedsięwzięcia w tym zakresie dotyczą:

- **Pogłębiania i digitalizacji procesu harmonogramowania produkcji surowców w celu uzyskania ich optymalnej jakości.** Harmonogramowanie jest obecnie wykonywane w kopalniach przeważnie metodami tradycyjnymi. Jednocześnie dostępnych jest wiele narzędzi komputerowych wspomagających podejmowanie decyzji w tym zakresie. Ich zastosowanie może usprawnić proces harmonogramowania i zwiększyć jego efektywność,

\(^{29}\) Ocena Stanu Technicznego Gospodarki, PwC, WISE, Warszawa 2014.

\(^{30}\) Symulacje makroekonomiczne efektów realizacji NPRGN, WISE, Warszawa 2014.
poprzez poprawę jakości surowca przeznaczanego do przetworzenia. Znajomość parametrów jakościowych surowca w pokładzie przy zastosowaniu odpowiednich algorytumów pozwala np. na takie zaplanowanie produkcji w poszczególnych przdzechach wydobywczych, by jej jakość nie podlegała znaczącym wahaniom. Surowiec energetyczny o jednorodnych parametrach jakościowych, np. węgiel brunatny, pozwala na lepsze wykorzystanie energii, prowadząc do wyższej sprawności elektrowni. [U]

- Poprawy poziomu zagospodarowania surowców dzięki zmniejszeniu ilości surowca głównego traconego na etapie wstępnej obróbki. Bardzo pomocne w tym celu byłoby zaprojektowanie diagramów pokazujących, jaką ilość danego surowca jest tracona na poszczególnych etapach jego przetwarzania (ew. wraca do obiegu surowca). Tym samym możliwe byłoby dostrzeżenie, na który etap tworzenia wartości dodanej należy zwrócić szczególną uwagę, aby uzyskać możliwe duże oszczędności materiałowe. Za przykład do naśladowania może położyć się tutaj projekt WellMet 2050 realizowany przez Uniwersytet z Cambridge. [T]

- Uzyskania szerszej palety surowców towarzyszących w rudzie surowcowi głównemu, a traconych na etapie separacji rud. Chodzi w szczególności o metale, których cena rynkowa – przy zastosowaniu obecnie dostępnych technologii i często niewielkiej koncentracji surowca – czyni ich oddzielenie nieopłacalnym. Rozwiązaniem jest wspieranie badań prowadzących do unowocześnienia stosowanych technologii. Dla przykładu, surowcami, które mogą być odzyskane z rud miedzi to molibden, ren, arsen, srebro, złoto, bizmut, selen, tellur i platynowce, a z rud cynkowo-żelazowych – ind, selen, tellur, german i bizmut. [T]

- Biogórniczta (polegającego na wykorzystaniu mikroorganizmów31 do ługowania metali z rud siarczkowych i ich koncentratów). W ostatnich latach wzrosło zainteresowanie mikrobiologicznymi metodami pozyskiwania metali. Ponadto rozwijane są nowe metody usprawniania procesu biogórniczta z zastosowaniem coraz większej liczby gatunków mikroorganizmów, a także obejmujące poszukiwanie optimum ekologicznego, w którym proces ługowania metali ze złóż zachodzi najefektywniej. [UT]

- Ponownego wykorzystanie surowców poprzez pozyskiwanie metali z hałd odpadów pogórniczych i szlamów flotacyjnych (np. dzięki fitogórniczta, tj. wykorzystaniu roślin32 do tego procesu, ale też powszechnie stosowanym metodom, jak np. przez ługowanie hałd). Fitogórniczta, wykorzystujące znaczne zdolności akumulacyjne niektórych roślin w stosunku do metali (hiper-akumulatorów), jest wprawdzie procesem bardziej długotrwałym i mniej efektywnym niż biogórniczta (por. wcześniejszy punkt), jednak jego wykorzystanie jest uzasadnione ze względu na możliwość równoległego prowadzenia fitoremediacji (technologii wykorzystującej tzw. rośliny większe w procesie oczyszczania środowiska). Mała popularność tej technologii wynika m.in. z uciążliwości zabiegów agrotechnicznych. Metody fitogórniczta są obecnie wykorzystywane głównie w badaniach laboratoryjnych. Przy ługowaniu hałd górna

32 Chodzi o rośliny wyższe zaliczane do grupy hiperakumulatorów. Główną ideą fitogórniczta jest obsadzanie nimi poletek na glebach wysoko zmineralizowanych lub terenach pogórniczych. Pion pozyskiwany w ten sposób zbiera się po zakończeniu sezonu wegetacyjnego, a pierwioski odzyskuje się ze wzbogaconej w nie suchej masy roślin.
warstwa materiału do ługowania (usuwanego na nieprzepuszczalnym podłożu) jest zraszana rozcieńczonym kwasem siarkowym, który przesącza się przez nią, zakwaszając i umożliwiając wzrost bakterii, a roztwór po ługowaniu odbierany jest z podłoża. [U T]

- **Wspieranie rozwoju i upowszechnianie nowoczesnych, wysokie zautomatyzowanych technologii przy wydobyciu na lądzie oraz z dna morskiego**, co pozwoliłoby na wstępną obróbkę surowców w miejscu wydobycia. Nowoczesne niskoemisyjne technologie wydobywcze umożliwiają m.in. wykonywanie prac rozpoznawczych i wydobywczych na dużych głębokościach (nawet do 2 km) oraz całkowitą automatyzację niektórych operacji górniczych. Technologie te stanowią odpowiedź na wyzwania związane z opłacalnością przedsięwzięcia, narażeniem zdrowia pracowników podziemnych, czy wpływem działalności wydobywczej na środowisko przyrodnicze. [U T]

- **Typizacji złoże wapieni pod kątem możliwości produkcji sorbentów do odsiarczania spalin**. Jednym z wielu ubocznych elementów spalania paliw stałych jest emisja związków siarki do atmosfery. Ograniczenie emisji SO₂ w procesach spalania udało się osiągnąć przez wykorzystanie w instalacjach odsiarczania sorbentów wapiennych. Podczas gdy dobrze rozpoznane są techniczne zdolności sorbowania związków SO₂ w istniejących instalacjach odsiarczania spalin, nie ma klasyfikacji złoże wapieni przydatnych do produkcji sorbentów węglanowych. Umożliwiłaby ona racjonalną gospodarkę złożami wapieni w Polsce i optymalizację zużycia sorbentów węglanowych w procesie odsiarczania spalin. [T]

7.1.2. **Działanie B.1.2. Poprawa efektywności wykorzystywania surowców**

Proponowane przedsięwzięcia w tym zakresie dotyczą:

- **Popularyzacji wykorzystania drewna jako materiału konstrukcyjnego**. Drewno jest powszechnie znany, wysokiej jakości materiałem konstrukcyjnym stosowanym w budownictwie. Drewno jako surowiec ma wiele zalet, jest łatwe w obróbce, jest dobrym izolatorem termicznym i elektrycznym, a także odpornym na działanie wielu czynników chemicznych. Ponadto drewno jest materiałem odnawialnym a jego produkcja, czyli wegetacja lasów pochłania dwutlenek węgla, przez co wpływa pozytywnie na bilans emisyjny całej gospodarki kraju. Biorąc pod uwagę energochłonność produkcji materiałów konstrukcyjnych drewno jest zdecydowanie najmniej energochłonnym materiałem w porównaniu z betonem, cegłami bądź elementami zbrojenia powszechnie stosowanymi do konstrukcji budynków i budowli. Wobec tego należy podjąć działania informacyjne dotyczące sposobów wykorzystania drewna w gospodarce, wydłużania żywotności jego stosowania oraz wykorzystania na etapie wycofania z użycia (postępowania z odpadami). [U]

- **Określenia dobrych praktyk dla Polski w zakresie zapobiegania nielegalnej eksploatacji surowców**, którą identyfikuje się – zwłaszcza w odniesieniu do kopalin nieobjętych własnością górniczą – jako poważny problem. Wymiana dobrych praktyk powinna dotyczyć w szczególności: metod ustalania rzeczywistej skali problemu, identyfikacji grup kopalin najbardziej narażonych na nielegalną eksploatację oraz skuteczności instrumentów służących
przeciwdziałaniu nielegalnej eksploatacji. Celem jest opracowanie skutecznych procedur, norm, wytycznych lub planów działań nadzoru geologicznego oraz administracji geologicznej określających, z jednej strony, postępowanie tych organów w celu minimalizacji zjawiska nielegalnej eksploatacji, a z drugiej – określających sposoby działania tych organów w przypadku stwierdzenia zjawiska nielegalnej eksploatacji. [U]

- Wspieranie rozwoju badań nad substytutami surowców istotnych dla polskiej gospodarki oraz substytutami surowców szkodliwych dla zdrowia i/lub środowiska. Badania powinny w szczególności skupiać się na tych surowcach, których recykling jest najtrudniejszy, a perspektywa zwiększenia produkcji w UE (szczególnie w Polsce) – najbardziej ograniczona. Rozwój substytutów oznaczałby wzrost innowacyjności polskiej gospodarki, co wzmocniłoby jej konkurencyjność. Jednocześnie pomógłoby zmniejszyć presję na zużycie surowców i ograniczył ryzyko zakłóceń w ich dostawach. [FT]

7.2. Priorytet B.2 Rozwój niskoemisyjnej gospodarki odpadami

Transformacja niskoemisyjna nie będzie możliwa bez dokonania zmian w zakresie gospodarki odpadami w taki sposób, aby stały się one możliwym do ponownego wykorzystania surowcem lub paliwem stosowanym w procesach energetycznych.

Biorąc pod uwagę hierarchię postępowania z odpadami, stanowiącą podstawę wszystkich działań w tym obszarze, najbardziej przyjaznym środowisku i efektywnym gospodarczo sposobem zagospodarowania odpadów jest zapobieganie ich powstawaniu oraz ponowne wykorzystanie. Procesy te dotyczą w większym stopniu etapu produkcji oraz fazy użytkowania, dlatego należą do celów szczegółowych zarządzania odpadami. Wykorzystanie odpadów jako paliwa lub innego środka wytwarzania energii jest również dobrym sposobem ich zagospodarowania, z uwagi na systematykę NPRGN opisane jest ono w rozdziale dot. celu szczegółowego w zakresie energetyki. Natomiast unieszkodliwianie, jako najmniej pożądanym sposobem zagospodarowania odpadów, nie został w ogóle zawarty w NPRGN. W ramach niniejszego priorytetu opisane będą zatem niektóre działania w zakresie odzysku, ze szczegółowym uwzględnieniem recyklingu.

Specyfika generowanych w Polsce odpadów znacząco różni się od unijnej normy Istotnym ich strumieniem są opady z przemysłu, w tym w szczególności z przemysłu wydobywczego. Ten rodzaj odpadów opisany jest już w priorytecie dotyczącym surowców. W tym miejscu większą uwagę należy natomiast zwrócić na odpowiednie zagospodarowanie odpadów komunalnych. Stanowią one ok. 8,9% wszystkich odpadów, będąc jednak istotnym czynnikiem wpływającym na emisyjność gospodarki. Obecnie głównym sposobem ich zagospodarowania jest unieszkodliwienie poprzez składowanie.

33 Źródło: GUS, Ochrona Środowiska 2013
7.2.1. Działanie B.2.1. Rozwój odzysku odpadów w celu pozyskiwania jak największej ilości surowców nieenergetycznych

Proponuje się pozyskiwanie jak największej ilości surowców nieenergetycznych dzięki:

- **Stworzeniu jak najbardziej efektywnych regulacji będących realizacją zasady rozszerzonej odpowiedzialności producenta.** Rozszerzona odpowiedzialność producenta to takie określenie jego obowiązków, ażeby był odpowiedzialny za zebranie i zagospodarowanie odpadów pochodzących z wyprodukowanego przez niego produktu. Przegląd krajowych aktów prawnych w tym zakresie, mający na celu ocenę ich efektywności pozwoli na stworzenie takich rozwiązań, które spowodują jak najbardziej przyjazne gospodarczo i środowiskowo zagospodarowanie poszczególnych strumieni odpadów. Jednocześnie, przedsiębiorcy będą w ten sposób zachęceni do zmiany systemów projektowania, produkcji i dystrybucji, które mają się przyczynić do lepszego zagospodarowania odpadów. [L]

- **Opracowaniu i wdrożeniu standardów dla produktów z recyklingu.** Produkty z recyklingu mają znaczący potencjalny rynek zbytu (np. plastikowe pojemniki, produkty do użytkowania gleby wyprodukowane z kompostu, kruszycy wytworzone z popiołu ze spalarni). Jednakże popęd na te produkty zależy od powstania istotnego rynku zbytu. Kluczową barierą dla szerszego wykorzystania produktów z recyklingu jest postrzeganie ich jakości jako niskiej. Bariera ta może być przezwyciężona przez stworzenie klarownych standardów dla produktów z recyklingu. Zbuduje to rynkowe zaufanie do stosowania tych produktów i powinno pomóc zwiększyć wielkość rynku zbytu. [U]

- **Promocji recyklingu opakowań i promocji opakowań przydatnych do recyklingu.** Odpady opakowaniowe wytwarzane są na wszystkich szczeblach łańcucha dostaw. Natomiast ich odpowiednie zagospodarowanie zależy przede wszystkim od działań użytkowników końcowych, czyli konsumentów. Duży udział w strukturze opakowań stanowią opakowania jednorazowe, zazwyczaj wytwarzane z tworzyw sztucznych, które bardzo trudno poddają się procesowi biodegradacji. Ważne jest zatem kontynuowanie działań edukacyjnych mających na celu zachęcenie do selektywnej zbiórki odpadów opakowaniowych, a także do wybierania produktów w opakowaniach wielokrotnego użytku oraz takich, które łatwo przetworzyć. Przykładem jest szkło opakowaniowe, które nadaje się zarówno do powtórnego bezpośredniego wykorzystania, jak też jest głównym źródłem stłuczki szklanej, wykorzystywanej przy produkcji szkła. Poziom recyklingu szkła opakowaniowego w UE wynosi 71%, podczas gdy w Polsce jest to tylko 51% 34 [U]

- **Selektywnemu zbieraniu oraz zagospodarowaniu odpadów komunalnych.** Właściwe zagospodarowanie odpadów zaczyna się od ich selektywnej zbiórki. Właściwie prowadzona może przyczynić się do zwiększenia jakości selektywnie zbieranych odpadów, a to może mieć bezpośrednie przełożenie na ilość odpadów poddawanych recyklingowi. Takie składniki odpadów komunalnych jak makulatura, szkło, tworzywa sztuczne, metale czy tekstylya mogą być odzyskiwane i poddawane dalszej przeróbce, a następnie ponownie użyte. Poziom recyklingu odpadów rośnie z każdym rokiem. Jednakże postęp w zakresie selektywnej zbiórki

34 www.feve.org (Europejska Federacja Producentów Opakowań Szklanych)
odpadów jest ciągle zbyt niski. Istnieje potrzeba dalszego edukowania społeczeństwa oraz tworzenie klarownych wytycznych w zakresie systemów zbiórki odpadów komunalnych, w tym zbiórki selektywnej. [U]

- **Wykorzystaniu surowców z otwieranych zamkniętych składowisk odpadów komunalnych.** W Polsce wciąż ponad 70% odpadów komunalnych zagospodarowywanych jest na składowiskach. Przez wiele lat odpady te zagospodarowywane były bez poddania jakiejkolwiek formie segregacji. Mając na uwadze charakterystykę strumienia zmięśnianych odpadów komunalnych można przypuszczać, iż na zamkniętych składowiskach znajdują się surowce nieenergetyczne, mogące być wykorzystywane w procesach produkcyjnych. [U]

- **Recyklingowi i ponownemu użyciu materiałów budowlanych.** Sektor budownictwa i produkcji materiałów budowlanych jest działem gospodarki o bardzo dużym potencjale wykorzystania odpadów. Prowadzenie prawidłowej gospodarki odpadami sprowadza się do wykorzystania odpadów w budownictwie przez ponowne zastosowanie przydatnych konstrukcyjnie elementów (reusing) lub zastosowanie surowców wtórnymi jako składnikami do produkcji nowych elementów budowlanych (recycling). Odpady budowlane znajdują zastosowanie do modyfikacji i otrzymywania takich materiałów budowlanych, jak: ceramika, kruszywa, spoiwa (cement, gips), zaprawy, tynki, beton, materiały izolacyjne i materiały bitumiczne. [U]

- **Odzyskiwaniu surowców ze zużytego sprzętu elektrycznego i elektronicznego.** Oprócz substancji szkodliwych, takich jak rtęć albo ołów ze zużytego sprzętu elektrycznego i elektronicznego można odzyskać cenne surowce, np. aluminium, miedź i deficytowe w Europie metale ziem rzadkich. Są one pożądane ze względu na szeroką skalę zastosowań w nowoczesnym przemyśle. [T]

- **Zagospodarowaniu produktów ubocznych pochodzenia zwierzęcego.** W Polsce powstaje rocznie ponad 1 mln ton produktów ubocznych pochodzenia zwierzęcego, które w ok. 60% przekazywane są do zakładów utylizacyjnych, gdzie w wyniku wysokoenergetycznych procesów cieplnych przekształcane są na maszki mięso-koszte. Natomiast niewiele produktów ubocznych pochodzenia zwierzęcego wykorzystywanych jest jako karma lub surowiec do produkcji karmy dla zwierząt domowych. Należy poszukiwać nowych rozwiązań mających na celu wykorzystanie surowców z tego rodzaju odpadów. [T]

- **Wykorzystaniu odpadów w przemyśle nawozowym.** W sytuacji szybkiego wyczerpywania się zasobów surowców naturalnych służących do produkcji nawozów mineralnych istnieje konieczność racjonalizacji gospodarowania tymi zasobami, także odzyskiem składników pokarmowych z odpadów powstających w różnych dziedzinach gospodarki. Dotyczy to przede wszystkim fosforu i potasu, które mogą być odzyskiwane z odpadów zwierzęcych i roślinnych. Istnieją także możliwości odzysku znaczących ilości związków wapnia z procesów hutniczych, które mogą być wykorzystane do produkcji nawozów wapniowych. Należy kontynuować prace nad tymi zagadnieniami. [T]
8. Cel szczegółowy C: Rozwój zrównoważonej produkcji (przemysł, budownictwo, rolnictwo)

Zrównoważona produkcja w ujęciu Programu obejmuje procesy związane z produkcją dóbr w przemyśle, budownictwem, jak również wytwarzaniem żywności.

Ww. trzy sektory w gospodarce odpowiadają prawie za połowę emisji gazów cieplarnianych generowanych w Polsce. Ze względu na duże zróżnicowanie pod kątem charakterystyki tych sektorów, każdy z nich zostanie przedstawiony oddzielnie.

Biorąc pod uwagę, iż zdecydowana większość zasobów jest nieodnawialna, coraz większego znaczenia nabiera produkcja, która optymalizuje ich wykorzystanie (zarówno pod względem ekonomicznym, jak i środowiskowym).

W kontekście zrównoważonej produkcji należy oceniać zużycie materiałów stanowiących nie tylko komponent produktów finalnych, ale również zasoby, które są wykorzystywane przy procesie produkcyjnym, w tym takie jak woda i energia (ciepła i elektryczna). Zatem wprowadzanie rozwiązań w zakresie zrównoważonej produkcji należy tłumaczyć zarówno w kontekście zwiększania konkurencyjności, zachowania bezpieczeństwa surowcowego rozumianego jako możliwość stałego dostarczenia zasobów niezbędnych do prawidłowego funkcjonowania gospodarki i zaspokajania potrzeb mieszkańców, jak również bardziej odpowiedzialnego wykorzystania zasobów z uwzględnieniem potrzeby ochrony środowiska i przyrody.

Niestety wprowadzenie rozwiązań niskoemisyjnych wiąże się z pokonaniem istotnych barier – szczególnie w grupie małych i średnich przedsiębiorstw (MSP). W latach 2007-2011 aż 42,3% firm sektora MSP nie podjęło żadnych działań, które mogłyby prowadzić do obniżenia presji (emisji) na środowisko. Najważniejsze przyczyny takiego stanu rzeczy wiążą się z:

- ograniczeniami wewnętrznymi, takimi jak brak wystarczająco wykwalifikowanej kadry, zbyt wysokie koszty; brak wystarczającej wiedzy;
- niewystarczającym poziomem wsparcia, w szczególności ze strony państwa np. w postaci niewystarczających zachęt ekonomicznych (dotacji, ulg podatkowych etc.);
- brakiem świadomości ekologicznej i wynikającej z niej potrzeby podjęcia działań zmierzających do ograniczenia negatywnego wpływu oraz optymalizacji procesów produkcyjnych.

Celem Programu jest stworzenie warunków, dzięki którym podejmowane decyzje w zakresie optymalizacji procesów produkcyjnych w przemyśle, budownictwie oraz rolnictwie uwzględniając będą konieczność transformacji niskoemisyjnej jako naturalnego czynnika zwiększającego konkurencyjność danego podmiotu na rynku. Taki stan rzeczy będzie możliwy dzięki:

- wspieraniu rozwoju gałęzi przemysłu charakteryzujących się produkcją nowoczesnych, niskoemisyjnych produktów o wysokiej wartości dodanej;
- wspieraniu optymalizacji wykorzystywania energii oraz zasobów w procesach produkcyjnych dzięki wprowadzeniu nowoczesnych systemów zarządzania, podnoszeniu kwalifikacji kadry roboczej oraz poprawie stanu niezbędnej infrastruktury technicznej;
- budowie systemu oceny produktów oraz organizacji z uwzględnieniem czynników związanych z optymalnym wykorzystaniem zasobów na etapie produkcji;
- wprowadzeniu rozwiązań technologicznych i technologii, które przyczynią się do zmniejszenia negatywnego wpływu na środowisko np. poprzez eliminację szkodliwych procesów i substancji lub też substytucję procesów;
- upowszechnianiu ekoprojektowania.

Przemysł

Doświadczenia ostatniego kryzysu wskazują, iż silna baza przemysłowa pozostaje czynnikiem zwiększającym odporność państw na skutki globalnych zawierzeń ekonomicznych. W tym kontekście nie sposób kwestionować znaczenia uprzemysłowienia dla rozwoju gospodarczego, tworzenia stabilnych miejsc pracy oraz zamożności społeczeństwa. Przemysł odpowiada za ponad 20% dochodu generowanego w Polsce (średnia dla UE - 16%), z drugiej strony stanowi istotne źródło emisji generowanych w gospodarce. Dla emisyjności gospodarki kluczowy jest nie tylko udział przemysłu w tworzonem PKB, ale również jego struktura. Zgodnie z danymi prawie 7% polskiego PKB jest wytwarzane w branżach energochłonnych, w tym: hutnictwie, przemysle cementowym oraz chemicznym.

Dla skutecznej transformacji niskoemisyjnej kluczowe jest zapewnienie przemysłowi warunków do dalszego rozwoju w taki sposób, by był on nowoczesny, konkurencyjny, przyjazny środowisku, a przy tym tworzył nowe miejsca pracy. Ocena stanu infrastruktury przemysłu wskazuje, że wiele gałęzi przemysłu dokonało istotnego postępu w zakresie procesów technologicznych. Niektóre z nich (np. hutnictwo) wykorzystują nowoczesne i niskoemisyjne technologie. Wobec tego ich potencjał redukcyjny nie jest wysoki, gdyż wiązałby się z poniesieniem dodatkowych, nieakceptowalnie wysokich kosztów. Sytuacja jest różna dla poszczególnych branż, jednak kluczowe (w szczególności energochłonne) branże spełniają już dziś restrykcyjne normy środowiskowe. Trwająca wiele lat systematyczna modernizacja parku maszynowego pozwala obecnie na osiągnięcie wskaźników emisyjności na poziomie BAT. Wysoki wskaźnik energochłonności, który w dalszym ciągu istotnie odbiega od średniej europejskiej, wynika natomiast z niskiego stopnia przetworzenia produkowanych w Polsce towarów.

W produkcji przemysłowej dominują branże produkujące dobra o niskiej wartości dodanej - przemysł spożywczy, drzewny i mineralny. Biorąc pod uwagę te dwa elementy charakteryzujące polski przemysł (stosunkowo wysoki poziom nasycenia sektora nowoczesnymi technologiami oraz koncentrację na produktach o niskiej wartości dodanej), można uznać, że potencjał redukcji bez istotnej zmiany struktury przemysłu jest ograniczony.

W ramach podejścia bottom-up zidentyfikowano 21 obszarów, co stanowi zaledwie 5,5% wszystkich obszarów. Zdecydowana większość z nich dotyczy inwestycji w nowe rozwiązania technologiczne w konkretnych branżach. Jednak wskazano również na konieczność zmian w procesach produkcyjnych, co docelowo może skutkować transformacją w kierunku produkcji wyrobów o wyższej wartości dodanej.

Celem Programu jest zapewnienie dalszego rozwoju sektora przemysłu, który będzie cechował się niższą emisyjnością.
W tym kontekście potencjalnym źródłem obniżenia poziomu emisji (w stosunku do wartości produkcji) może być wspieranie rozwoju nowoczesnych i zaażawanych gałęzi przemysłu, które będą komplementarne z istniejącymi obecnie sektorami energetochnymi. Wynikiem działań w tym zakresie będzie zwiększenie udziału kompletnych produktów przemysłowych względem półproduktów, a w konsekwencji zwiększenie ich wartości dodanej. Innymi słowy cel Programu, tj. transformacja niskoemisyjna w obszarze przemysłu, będzie realizowany dzięki zwiększeniu roli polskiego przemysłu w globalnym łańcuchu dostaw poprzez jego strukturalne przesunięcie w kierunku bardziej zaażawanej produkcji przy jednoczesnym możliwym i akceptowalnym ekonomicznie procesie unowocześniania istniejących obecnie sektorów przemysłu tradycyjnego.

Ze względu na zróżnicowaną strukturę przemysłu zarówno potencjał obniżenia emisyjności, jak i koszty z nim związane oszacowano jedynie dla wybranych – najbardziej energetochnych branż – hutnictwa, przemysłu cementowego i przemysłu chemicznego i petrochemicznego.

Teoretyczny potencjał redukcji gazów cieplarnianych w obszarze przemysłu (biorąc pod uwagę wyłącznie działania na rzecz poprawy infrastruktury) wynosi w 2050 roku:

- 6% względem 1990 roku
- +2% (wzrost) względem 2005 roku

Dzięki działaniom zidentyfikowanym w NPRGN możliwe jest obniżenie emisyjności przemysłu w 2050 roku o około 9 mln ton ekwiwalentu CO₂ w porównaniu do scenariusza bez podjęcia interwencji (wielkość ta stanowi około 15% emisji generowanych przez przemysł w 2010 roku).

Szacuje się, że koszty związane z zwiększeniem efektywności branży przemysłowej w kontekście celów NPRGN wynoszą około 27 mld złotych w latach 2010-2050.

Możliwe działania pozwalające na osiągnięcie redukcji emisji dwutlenku węgla w procesach przemysłowych dotyczą m.in. wykorzystania ciepła odpadowego w procesach technologicznych oraz do produkcji energii elektrycznej, wykorzystania gazów procesowych, zwiększenia udziału złomu w produkcji, wzrostu udziału paliw niskoemisyjnych w miksie energetycznym, intensyfikacji procesów, poprawy efektywności instalacji.

8.1. **Priorytet C.1 Tworzenie sprzyjających warunków dla rozwoju niskoemisyjnej gospodarki w sektorze przemysłu**

35 Potencjał redukcji gazów cieplarnianych zidentyfikowany w ramach działań NPRGN w obszarze przemysłu wynoszący około 9 mln ton ekwiwalentu CO₂ jest znacznie wyższy niż teoretyczny potencjał redukcji emisji wynikający wyłącznie z działań infrastrukturalnych. Taki stan rzeczy wynika z faktu, że główny potencjał redukcyjny w obszarze przemysłu nie wiąże się ze zmianami infrastruktury, ale jest wynikiem prognozowanych zmian struktury polskiego przemysłu i jego miejsca w globalnym łańcuchu wartości.

36 Materiały analityczne wykonane na potrzeby NPRGN przez WISE oraz PwC.
dotyczące efektywności energetycznej, spełnić wymogi w zakresie efektywności wykorzystania zasobów oraz minimalne standardy ochrony środowiska.

Wraz ze wzrostem kosztów produkcji (przede wszystkim cen surowców i energii oraz koniecznością spełnienia wyższych norm środowiskowych usprawiedliwionych ponoszonymi przez społeczeństwo kosztami zewnętrznymi) realizacja wyłącznie minimalnych działań odtworzeniowych nie będzie wystarczająca do zachowania konkurencyjności. Stworzony system wymagań i zaszczytów stymulować do podniesienia innowacyjności przedsiębiorstw, a jednocześnie umożliwiać rozłożenie działań w czasie, pozwalając przystosować się firmom do niezbędnych zmian. Do koniecznych zmian zaliczyć można np. szersze wykorzystanie mniej emisyjnych paliw w systemach produkcyjnych, zagospodarowanie ciepła po-procesowego w postaci energii lub w postaci odwodnionej wody, co pozwoli zminimalizować koszty działalności firmy oraz minimalizować negatywne wpływy na środowisko.

Unijna polityka klimatyczno-energetyczna, w powiązaniu z dodatkowymi wymaganiami środowiskowymi, już dziś twory presję na podejmowanie inwestycji, które obniżą wpływ działalności gospodarczej na środowisko. Tym samym generuje popyt na innowacyjne rozwiązania przyjazne środowisku – ekoinnowacje. Konieczność rozwoju ekoinnowacji wynika jednak nie tylko z istniejących polityk unijnych, ale jest konsekwencją zmian zachodzących w gospodarce i szerzej w całym otaczającym świecie. Do tych zmian zaliczyć należy niższą podaż surowców, ograniczoną pojemność środowiska, czy załamania w ekosystemach lub ich elementów. Przede wszystkim jednak rozwój ekoinnowacji stanowi szansę dla polskiej gospodarki. Szczególnie istotne są możliwości tworzenia nowych miejsc pracy, ograniczanie kosztów zewnętrznych, jak i identyfikacja tańszych rozwiązań, szczególnie w warunkach internalizacji kosztów produkcji konsumpcji.

Jednocześnie rynek zielonych technologii charakteryzuje się ogromnym potencjałem wzrostu, który może zostać wykorzystany również przez polskie przedsiębiorstwa. Przez wiele lat Polska postrzegana była jako nasładowca w grupie europejskich innowatorów. Większość innowacji powstających w kraju z dalszym ciągiem ma charakter innowacji prostych i sprowadza się do ulepszania istniejących produktów i technologii, jak również nadawania im nowych funkcji użytkowniczych. Jednak coraz częściej powstają w Polsce wynalazki na skalę światową, takie jak technologia produkcji grafenu, czy laserów. Ukierunkowanie wsparcia na obszary, które mogą decidować o trwałej przewadze konkurencyjnej oraz stać się polską specjalnością eksportową zostało dokonane w Krajowej Inteligentnej Specjalizacji stanowiącej podstawę dystrybucji środków w ramach PO Inteligentny Rozwój. Koncentracja środków na programach B+R w obszarach m.in. technologii niskoemisyjnych, biokatalizatorów, technologii biopolimerowych, fotoniki, technologii pozyskiwania surowców naturalnych, czy ich substytutów powinna nie tylko przyczynić się do zmniejszenia emisyjności polskiej gospodarki, ale również do zmiany jej struktury w kierunku zwiększonej wartości dodanej. Niezbędna jest także lepsza współpraca ośrodków naukowych z przemysłem oraz zapewnienie odpowiednich rozwiązań dla umożliwienia przejścia technologii z fazy laboratoryjno-pilotowej do skali komercyjnej tj. wprowadzenie produktu na rynek.

37 Ekoinnowacja – Innowacja, która poprawia efektywność wykorzystania zasobów naturalnych w gospodarce, zmniejsza negatywny wpływ działania człowieka na środowisko lub wzmocnia odporność gospodarki na presje środowiskowe.

Projekt z dnia 4 sierpnia 2015 roku

Ministère de l’Économie
Dodatkowe zwiększenie ekonomicznej efektywności wykorzystania zasobów wymaga przesunięcia w globalnym lančuchu dostaw w kierunku produktów bardziej złożonych i zaawansowanych – to zaś łączy się z koniecznością znalezienia nowych modelew biznesowych oraz nawiązywania współpracy pomiędzy przedsiębiorstwami, również w zakresie tworzenia sieci współpracy, np. typu „mój odpad twoim zasobem”. W obecnej sytuacji wciąż brakuje odpowiednich instytucji otoczenia biznesu, które mogłyby pomóc w tym zakresie.

Dostosowanie do nowej sytuacji rynkowej wymaga jednak nie tylko inwestycji technologicznych i nawiązania współpracy pomiędzy przedsiębiorcami. Zrównoważona produkcja oznacza także zmianę myślenia już od momentu projektowania produktu (tzw. ekoprojektowanie), poprzez wykorzystanie zasobów niezbędnych do produkcji, samego procesu produkcyjnego, a także sposobu zagospodarowania odpadu po zakończeniu cyklu życia produktu, tak by stanowił potencjalnie nowy zasób. Takie podejście wymaga nowego spojrzenia dotyczącego zarządzania przedsiębiorstwem oraz uzyskania koniecznych danych na temat cyklu życia produktu, np. przy wykorzystaniu metodyki LCA. W niniejszym priorytecie zaproponowano działania, dzięki którym przedsiębiorcy łatwiej będą mogli wykorzystać te narzędzia w swojej pracy.

Ponadto w dalszym ciągu przeszkodą jest brak odpowiednio wykwalifikowanych i doświadczonych kadry, w tym absolwentów szkół technicznych oraz inżynierów w dziedzinach bezpośrednio związanych z transformacją niskoemisyjną. Mimo podjętych wysiłków na rzecz dostosowania modelu kształcenia do zmieniających się warunków rynkowych wciąż występują możliwości jego ulepszenia. Celem NPRGN jest przyczynienie się do opracowania rozwiązań systemowych, które skutecznie powiążą rzeczywistość rynkową z systemem szkolnictwa, w tym szkolnictwa zawodowego.

Działania o charakterze inwestycyjnym, tj. wsparcie na działalność badawczo-rozwojową ukierunkowaną na niskoemisyjne technologie, jak również na absorpcję technologii przez przemysł w perspektywie 2014-2020 realizowane będą z programów operacyjnych: Inteligentny Rozwój, Infrastruktura i Środowisko, jak również z regionalnych programów operacyjnych oraz środków krajowych Funduszu Ochrony Środowiska i Gospodarki Wodnej. W kolejnym okresie (po 2020 r.) ze względu na ograniczone współfinansowanie unijne proponuje się rozważyć możliwość wprowadzenia ulgi podatkowej na działalność B+R w obszarze ekoinnowacji lub zwiększenie preferencyjności aktualnie projektowanej ulgi na B+R, gdy przedmiot badań dotyczy gospodarki niskoemisyjnej, jak również dla działań inwestycyjnych mających na celu zwiększenie efektywności wykorzystania zasobów poniżej opłacalności ekonomicznej. Instrumenty wsparcia powinny obejmować również zapewnienie dostępu do finansowania ze źródeł prywatnych (aniołów biznesu) i funduszy kapitału podwyższonego ryzyka.

8.1.1. Działanie C.1.1. Rozwój produktów niskoemisyjnych

W ramach działania proponuje się:

- **Upowszechnianie stosowania metod oceny całego cyklu życia produktów w przedsiębiorstwach.** Możliwość dokonania ustalonych w pomiaru efektywności środowiskowej produktów stanowi jedno z najistotniejszych wyzwań w kontekście transformacji niskoemisyjnej. Pozwala na identyfikację najmniej optymalnych procesów w przedsiębiorstwach oraz wprowadzenie koniecznych zmian. Obecnie przedsiębiorstwa, które
chcą dokonać zmniejszenia emisyjności produktu są zmuszone do korzystania z wielu niezależnych metodyk, których wyniki mogą być niejednoznaczne lub sprzeczne między sobą. Wiąże się to z istotnymi kosztami oraz przedłużeniem procesu badania. Firmy borykają się teź z brakiem zaufania ze strony konsumentów, którzy są zdezorientowani zbyt wieloma etykietami zawierającymi informacje utrudniające porozumiane oceny. W związku z tym proponuje się upowszechniwać w Polsce tworzone na szczeblu UE jednolite, europejskie metodyki oceny efektywności środowiskowej poprzez tworzenie centrów popularyzacji LCA, które na preferencyjnych zasadach prowadząby pomiary efektywności środowiskowej przedsiębiorstw działających w Polsce. Niezależnie od tego istnieje potrzeba stworzenia lub zaadaptowania dostępnych na rynku narzędzi umożliwiających wykonywanie samodzielnej oceny LCA przez MŚP bez konieczności zakupu przez nie dodatkowego oprogramowania. Zalecane jest również wprowadzenie obowiązkowej, uproszczonej, taniej i szybkiej certyfikacji dla MŚP w oparciu o najważniejsze elementy metodyki LCA. Upowszechnianie analiz cyklu życia produktów oraz organizacji pozytywne wpłynę na proces projektowania środowiskowego oraz będzie skutkować upowszechnianiem zarządzania środowiskowego w przedsiębiorstwach wraz z budową odpowiedniego systemu zbierania i wykorzystywania danych koniecznych do oceny redukcji emisji generowanych przez przedsiębiorstwa. [U F L]

- **Stworzenie lokalnych sieci doradców ds. audytu środowiskowego.** Audyt środowiskowy podobnie jak przeprowadzany audyt energetyczny jest narzędziem umożliwiającym uzyskanie oszczędności zarówno w zakresie zużycia energii jak i innych zasobów wykorzystywanych w procesie produkcyjnym. W związku z tym proponuje się stworzyć sieć lokalnych doradców ds. audytu środowiskowego, którzy na preferencyjnych warunkach będą mogli udzielić podstawowych informacji przedsiębiorcom na temat możliwości przeprowadzenia odpowiednich kontroli. Ponadto doradcy będą pomagać przedsiębiorcom w znalezieniu optymalnych rozwiązań technologicznych jak również organizacyjnych w zakresie ochrony środowiska i transformacji niskoemisyjnej. Stworzenie odpowiedniej sieci wymagać będzie dopasowania do potrzeb poszczególnych rynków lokalnych oraz uwzględnienia specyfiki lokalnej branży produkcyjnej, a także potencjalnych potrzeb w tym zakresie. Wobec tego konieczne będzie nawiązanie bieżącej współpracy odpowiednich izb branżowych, instytucji zajmujących się ochroną środowiska, władz lokalnych oraz administracji państwowej w celu wypracowania szczegółowych rozwiązań. [U F]

- **Upowszechnianie nowych modeli biznesowych sprzyjających rozwojowi gospodarki o zamkniętym obiegu.** Istniejące modele biznesowe w powiązaniu z postawami konsumpcyjnymi nie sprzyjają efektywnemu wykorzystaniu zasobów przez gospodarkę. Zmiana modeli biznesowych powinna prowadzić do zmniejszenia kosztów zarówno pozyskania surowców/ komponentów jak i kosztów dostarczenia gotowych produktów do konsumentów finalnych. Obecnie bardzo często koszt transportu surowców niemal dorośle kosztem samego surowca. Przykładem pozytywnych rozwiązań z tego zakresu są symbozy przemysłowe w budownictwie, gdzie wykonawcy dzielą się używanymi produktami przemysłowymi, ponownie użytkują osprzęt, realizują procesy wykorzystując produkty uboczne i proekologicznie działają w zakresie logistyki. Zielone modele biznesowe GBM mogą być opracowane za pomocą systemu monitoringu środowiskowego GMES (Global Monitoring for Environment Security) dostarczającego danych o oszczędnościach, które prowadzą do zrównoważonych modeli biznesowych. Działania polityczne w ramach UE i krajów członkowskich mają za zadanie szersze upowszechnianie GBM, ponieważ istnieje szereg barier
utrudniających takie prowadzenie biznesu, w tym np. nieświadomość, brak wewnętrznych bodźców w zarządzaniu przedsiębiorstwami, a także czynnik ryzyka. Działania prowadzone w tym zakresie mają na celu ukierunkowanie przemysłu na produkty oraz usługi o średnim i wysokim stopniu zaawansowania technologii, wymagające wysokich kwalifikacji. [U]

- **Upowszechnianie zasad społecznej odpowiedzialności przedsiębiorstw (CSR) w zarządzaniu przedsiębiorstwami.** CSR pełni istotną rolę w budowaniu nowoczesnych organizacji respektujących zarówno potrzeby własne, jak również potrzeby poszczególnych interesariuszy. Wspieranie rzeczywistego upowszechniania zasad społecznej odpowiedzialności przedsiębiorstw może pomóc zarówno w odnalezieniu najbardziej efektywnych mechanizmów współpracy pomiędzy przedsiębiorstwami (w łańcuchu dostaw), jak również działań prowadzonych wewnątrz organizacji (np. szkolenie zespołu). W związku z tym proponowane jest instytucjonalne wzmocnienie działań prowadzonych przez ministra właściwego ds. gospodarki w zakresie wspierania rozwoju CSR w Polsce. [U F]

- **Wprowadzenie do instrumentów wsparcia dla przedsiębiorstw dodatkowych kryteriów premiujących inwestycje obejmujące prace B+R oraz wdrożenie (absorpcję) technologii niskoemisyjnych.** W ciągu najbliższych 5-7 lat przewidziane jest wsparcie dla przedsiębiorstw mające na celu zwiększenie poziomu innowacyjności całej gospodarki. Działania realizowane ze środków funduszy strukturalnych będą obejmować zarówno projekty pozwalające na dostosowanie się przedsiębiorstw do wymogów ochrony środowiska (PO Infrastruktura i Środowisko np. Priorytet Inwestycyjny vii: Promowanie efektywności energetycznej i korzystania z odnawialnych źródeł energii w przedsiębiorstwach) jak i projekty o charakterze badawczym ukierunkowanym na innowacje w zakresie gospodarki niskoemisyjnej (PO Inteligentny Rozwój np. w ramach Krajowej Inteligentnej Specjalizacji technologie dotyczące surowców naturalnych, gospodarką odpadami, czy zrównoważona energetyka). Niezależnie od interwencji POIS oraz ukierunkowania projektów na obszary wskazane na liście KIS, proponuje się uwzględnić w kryteriach wyboru projektów, w ramach programów realizowanych centralnie, preferencji dla projektów które intencjonalnie lub dodatkowo wpływają pozytywnie na ograniczenie emisji. [U]

- **Stworzenie platformy informacji nt. dostępnych technologii niskoemisyjnych** w obszarach: efektywności energetycznej, zarządzania odpadami, ograniczenia emisji gazów cieplarnianych. W dalszym ciągu istnieje problem z dostępem do informacji o nowoczesnych technologiach środowiskowych, w szczególności w zakresie ich parametrów sprawnościowych i efektu środowiskowego. W szczególności dotyczy to średnich i małych przedsiębiorstw. Proponowana platforma będzie mogła być stworzona w oparciu o platformę ETV (Environmental Technology Verification), na której zamieszczane będą zweryfikowane przez niezależne jednostki badawcze technologie środowiskowe. [U]

8.1.2. Działanie C.1.2. Tworzenie kadry dla gospodarki niskoemisyjnej

Rozwój gospodarki niskoemisyjnej w obszarze przemysłu wymaga specjalistów m.in. z zakresu, nauk technicznych, inżynierii produkcji oraz ochrony środowiska. W związku z tym proponuje się:
- Zbudowanie odpowiedniego zaplecza dydaktycznego w postaci bazy do kształcenia praktycznego w szkołach zawodowych oraz technicznych. Położenie nacisku na szkolnictwo o profilu ogólnym skutkuje pogorszeniem warunków nauki w szkołach zawodowych oraz technicznych. Niewystarczający poziom inwestycji w szkolnictwie zawodowym oraz szybkie zmiany w gospodarce doprowadziły do sytuacji, w której wyposażenie ośrodków często nie pozwala na naukę umiejętności potrzebnych na rynku. Wobec tego istotne jest lepsze wyposażenie szkół technicznych w niezbędną infrastrukturę pozwalającą uczniom nabywać umiejętności praktycznych związanych z zastosowaniem i eksploatacją urządzeń, w tym w dziedzinach związanych z racjonalnym wykorzystywanie zasobów, zwiększaniem efektywności energetycznej oraz zmniejszaniem emisyjności gospodarki. [F L]

- Opracowanie systemu aktualizacji podstaw programowych dla szkolnictwa technicznego, który będzie mógł wystarczająco elastycznie reagować na ewolucję rynku pracy. Proponuje się umożliwienie bardziej elastycznego włączenia do podstaw nauczania zagadnień, które mogą być przydatne dla wchodzących na rynek pracy absolwentów szkół technicznych oraz zachęcanie ośrodków szkolnych do nawiązywania współpracy z instytucjami rynku pracy oraz przedsiębiorcami w zakresie planowania, uruchamiania oraz prowadzenia wybranych kierunków kształcenia. [U F L]

- Popieranie możliwości dokształcania oraz przekwalifikowania kadry pedagogicznej w szkołach zawodowych oraz technicznych. Dostosowanie się szkolnictwa zawodowego i technicznego do wymogów transformacji niskoemisyjnej wymaga uaktualnienia oraz stałego podwyższania wiedzy przez nauczycieli. Wobec tego proponowane jest stworzenie systemowych narzędzi pozwalających nauczycielom na kształcenie przez całe życie oraz wykorzystywanie nabytej wiedzy w nauczaniu. [U F L]

- Zachęcanie wysokokwalifikowanych specjalistów do podejmowania pracy w szkołach zawodowych poprzez wprowadzanie odpowiedniego systemu motywującego, zależnego od wyników nauczania oraz pozwalającego na łączenie obowiązków w szkole z pozostałymi obowiązkami zawodowymi (np. w przedsiębiorstwie). [U F L]

- Wspieranie możliwości wyższego szkolnictwa technicznego i zawodowego w zakresie kształcenia wysokiej klasy specjalistów w zakresie efektywności energetycznej, zarządzania środowiskowego w przedsiębiorstwach, metod śledzenia i zarządzania środowiskowym, ekoproduktowym, racjonalnego wykorzystania zasobów oraz współpracy w ramach łańcucha dostaw. Działania w tym zakresie powinny być dopasowane do potrzeb przemysłu i dotyczyć zarówno wyposażenia uczelni w odpowiednie laboratoria oraz sprzętu, jak również wiązać się z dostarczeniem pomocy w nawiązywaniu współpracy pomiędzy nauką, biznesem oraz instytucjami rynku pracy. [U F L]

- Wspieranie kształcenia dla dorosłych w zakresie nauk technicznych. Zgodnie z licznymi analizami w najbliższym czasie kluczowe sektory gospodarki mogą spotkać się z niedoborem kadr w wielu obszarach. Wraz z niekorzystnymi zmianami demograficznymi taki stan rzeczy może negatywnie wpłynąć na tempo rozwoju polskiej gospodarki. Wobec tego proponuje się upowszechniać oraz propagować możliwość kształcenia umiejętności technicznych oraz zawodowych wśród dorosłych – również w zakresie umożliwiającym...
całkowite przekwalifikowanie. Działania w tym zakresie mogą polegać zarówno na wspieraniu szkolnictwa dla dorosłych, udzielaniu pomocy dla osób wyrażających wolę przekwalifikowania się, jak również udzielania wsparcia dla przedsiębiorstw zatrudniających pracowników wymagających uzupełnienia niezbędnej wiedzy oraz umiejętności. [U F L]

- Opracowanie listy zawodów oraz umiejętności koniecznych dla rozwoju gospodarki niskoemisyjnej w Polsce wraz z tworzeniem cyklicznych raportów dotyczących skali zapotrzebowania na poszczególnych specjalistów oraz dostosowywania instytucji rynku pracy do pojawiających się zmian. Lista taka pomoże skierować pomoc w kierunku zawodów najbardziej poszukiwanych na rynku, zmniejszyć pojawiającą się lukę oraz przyspieszyć proces modernizacji gospodarki. [U F]

8.2. **Priorytet C.2 Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych**

Przemysł energetyczny jest najbardziej wrażliwy na zmiany w gospodarce związane z transformacją niskoemisyjną. Konieczność spełnienia wymogów BAT wymusza na zakładach modernizację parku technologicznego, co oznacza, że zdecydowana większość z nich korzysta już z najnowszych technologii. Tym samym dalsze radykalne obniżenie emisyjności wiąże się z wdrożeniem technologii na dziś nieznanych lub/niemophysicalnych rynkowo lub przesunięcia produktów w łańcuchu wartości dodanej. Nie oznacza to jednak całkowitego braku możliwości zmniejszenia emisji przez przemysł energetyczny. Niewielkie zmiany w procesie produkcyjnym, zagospodarowanie produktów ubocznym (np. ciepła poprodukcyjnego) oraz odpadów, zastąpienie materiałów wykorzystywanych do produkcji mniej emisyjnymi powinny skutkować obniżeniem emisyjności.

8.2.1. **Działanie C.2.1. Zmniejszenie emisyjności sektora cementowego**

Proponuje się:

- **Zastąpienie w produkcji cementu klinkieru przez alternatywne składniki.** Klinkier jest produktem powstającym w cementowniach ze spieku wapienia i gliny w wysokiej temperaturze. Proces ten jest odpowiedzialny za ok. 50% emisji CO₂ w produkcji cementu. Pozostałe 50% emisji pochodzi z paliw używanych do spiekania oraz elektryczności wykorzystywanej do obracania pieca (piec obrotowy) oraz mielenia klinkieru i ładowanego paliwa. [U F]

- **Zmianę paliwa wykorzystywanego do produkcji cementu** (przez odpady lub biomasse). Obecnie około 15% paliw stosowanych do wypalania w Europie pochodzi z paliw odpadowych, takich jak stare opony, jak również w 5% z biomasy. Mogą istnieć bariery techniczne lub inwestycyjne dla znacznego zwiększenia udziału biomasy. Sprawność cieplna procesu może ulec zmniejszeniu w sytuacji, gdy paliwa alternatywne cechują się zbyt dużą zawartością wilgoci. Międzynarodowa Agencja Energetyczna szacuje, że do 2050 r. 24% emisji

CO₂ wynikającej z produkcji cementu może być uniknięte w wyniku zmiany paliw kopalnych na biomase lub paliwa o niższej zawartości węgla.39 (Działanie zostało również ujęte w priorytecie: A.3. Upowszechnienie alternatywnych (innych niż odnawialne) metod pozyskiwania energii, jednakże ze względu na podejście sektorowe w tym priorytecie zdecydowano się je umieścić, jako działanie specyficzne dla sektora cementowego) [U]

- **Wykorzystanie ciepła odpadowego w procesie produkcji cementu.** W przemyśle cementowym proces kalniczny wymaga podgrzania wapienia i gliny do ok. 1450°C, aby wyprodukować klinkier. Dlatego proces chemiczny kalniczny dostarcza znacznych ilości ciepła odpadowego o wysokiej temperaturze, które może być wykorzystane w produkcji elektryczności (bottom-cycle cogeneration) lub w ciepłownictwie. Temperatury wymagane dla produkcji energii elektrycznej wynoszą ok. 200-250°C. W skali globalnej występuje znaczący potencjał do lepszego zagospodarowania ciepła odpadowego w przemysle cementowym. Działanie zostało również ujęte w priorytecie: E.3. Upowszechnienie alternatywnych (innych niż odnawialne) metod pozyskiwania energii, jednakże ze względu na podejście sektorowe w tym priorytecie zdecydowano się je umieścić jako działanie specyficzne dla sektora cementowego. [U]

- **Wyższą efektywność produkcji.** Inną metodą oszczędności energii jest zwiększenie efektywności cieplnej w zakresie zużycia energii cieplnej na tonę produkowanego klinkieru. W najlepszej dostępnej technologii podgrzewacz i prekalcynator pozwala zaostrzyć 10% w stosunku do pieca obrotowego do wypalania klinkieru bez prekalcynatora. Obecnie średnia efektywność cieplna dla różnych typów pieców obrotowych nieznacznie zmalała. Uważa się, że może być to powodowane wzrostem zużycia biomasy oraz paliw odpadowych, które mogą mieć większą wilgotność, co związane jest z dodatkowym zapotrzebowaniem na ciepło.40 [U]

8.2.2. **Działanie C.2.2. Obniżenie emisyjności przemysłu chemicznego**

Proponuje się:

- **Optymalizację katalizatorów wykorzystywanych w przemyśle chemicznym.** Optymalizacja katalizatorów w przemyśle chemicznym jest jednym ze sposobów poprawy efektywności energetycznej. Na przykład produkcja amoniu w procesie Haber-Boscha wymaga wysokiego ciśnienia i temperatury. Modyfikacja materiałów katalitycznych może zmniejszyć wymagania dot. ciśnienia41. [F]

- **Zrównoważone wykorzystanie zasobów biologicznych w przemyśle chemicznym.** Wprowadzenie na rynek produktów pochodzenia organicznego („bio-based”) w miejsce produktów wytwarzanych metodami konwencjonalnymi pozwoli na zmniejszenie zużycia energii oraz emisji gazów cieplarnianych, a także zmniejszy zużycie nieodnawialnych surowców naturalnych. Przy użyciu biotechnologii w przemyśle chemicznym proces przetwarzania jest wykonywany przez mikroorganizmy, takie jak grzyby, drożdże i bakterie (pożywką dla nich są surowce odnawialne, np. melasa, skrobia lub oleje roślinne). W ten sposób można uzyskać np. kwas cytrynowy, kwas mlekowy, biosurfaktanty, biopolimery,

enzymy. Proces biologiczny jest bardzo efektywny pod względem energetycznym i przebiega w niskich temperaturach, co wpływa na ograniczenie zużycia paliw kopalnych i emisji dwutlenku węgla. Powstałe w ten sposób produkty są najczęściej bio-zamiennikami produktów wytwarzanych energochłonnymi metodami konwencjonalnymi. Wg dostępnych badań blisko 90% produktów ropopochodnych można z powodzeniem zastąpić produktami „bio-based”. Kolejnym atutem takich produktów jest ich biodegradowalność⁴² i zmniejszenie ilości odpadów chemicznych. [F]

- **Poprawę technologii krakingu parowego.** Kraking polega na rozkładzie długich węglowodorów, takich jak smary i woski, na węglowodory o krótkich łańcuchach węglowych, takich jak benzyna i LPG. Kraking parowy jest techniką używaną zazwyczaj do produkcji olefin. Olefiny to węglowodory nienasycone, czyli etan, LPG, lekka nafta, etylen, propylen i butadien. Kraking parowy jest pojedynczym procesem, który zużywa najwięcej energii w przemyśle chemicznym (ok. 30%). Zastąpienie obecnych przeciętnych technologii krakingu parowego przez najlepsze technologie może zwiększyć efektywność energetyczną o 20%.⁴³ Według raportu Banku Światowego “Transformacja w kierunku gospodarki niskoemisyjnej w Polsce” poprawa technologii krakingu etylenu obejmuje udoskonalenie piecow, lepsze materiały oraz udoskonalenie technik separacji i kompresji, aby zmniejszyć bezpośrednie zużycie energii w procesie krakingu. [F T]

- **Rozwój infrastruktury przesyłowej** w celu umożliwienia transportu chemikaliów rurociągami. W Polsce chemikalia przewożone są głównie transportem drogowym (89%) lub kolejowym. Budowa systemu rurociągów olefinowych i ich wykorzystanie do przesyłu chemikaliów powinna pozytywnie wpływać na środowisko z dwóch głównych powodów. Po pierwsze – bezpieczeństwo transportu chemikaliów ma ogromne znaczenie dla zdrowia ludzi, zwierząt i środowiska. W sytuacji, gdy dochodzi do kolizji lub wypadku drogowego, istnieje zagrożenie uwolnienia znacznych ilości substancji o właściwościach żrących, palnych, wybuchowych oraz trujących i skażenia środowiska. Po drugie – zastąpienie rurociągami transportu drogowego chemikaliów, przewożonych codziennie w dużych ilościach, przyczyni się do zmniejszenie emisji gazów cieplarnianych i innych substancji. Rurociągi olefinowe zaliczane są do najbezpieczniejszych środków transportu chemikaliów. [F]

8.2.3. Działanie C.2.3. Obniżenie emisyjności przemysłu hutniczego

Proponuje się:

- **Wymianę energochłonnych urządzeń** (np. sprężarek, pomp wodnych, wentylatorów, klimatyzatorów) na nowoczesne o mniejszym zużyciu energii elektrycznej. Wiele urządzeń elektrycznych zainstalowanych w zakładzie powinno być stopniowo zamieniane na bardziej nowoczesne, o lepszej sprawności, co zmniejszy zużycie energii elektrycznej, a tym samym

przyczyni się do poprawy efektywności energetycznej. W skali huty zintegrowanej oszczędności z tego tytułu mogą wynosić ok. 20 %. [F]

- **Optymalizację procesu spalania gazów odpadowych** (poprocesowych), przystosowanie kotłów w elektrociepłowni do spalania gazów odlotowych. W hutach zintegrowanych podczas procesów produkcyjnych wydzielają się duże ilości gazów (w 2011 r. ok. 3 750 mln m³ gazu wielkopiecowego i 26 mln m³ gazu konwertorowego). Gazy te posiadają dużą wartość opałową i mogą być spalane w elektrociepłowniach zakładowych. Ich zagospodarowanie (utylizacja) poprawi efektywność energetyczną. Wykorzystanie gazów powstających w procesach technologicznych w hutnictwie stali (tj. np. gaz koksoniczny, gaz wielkopiecowy, gaz konwertorowy) pozwala na zagospodarowanie gazów odpadowych i tym samym zmniejszenie zużycia gazu ziemnego. Pełne wykorzystanie gazów odpadowych pozwoli na znaczną poprawę efektywności energetycznej i mniejsze uzależnienie hut od dostaw gazu ziemnego. [F]

- **Zmianę sterowania napędów głównych walcarek** (na sterowanie przekształtnikowe) lub wymianę całych napędu wraz z układem sterowania. Niektóre z pracujących w hutach maszyn i urządzeń, w tym również walcarki, wymagają modernizacji. Zastosowanie proponowanego rozwiązania poprawi efektywność energetyczną i zmniejszy zużycie energii elektrycznej. [F]

- **Zabudowę układów kompensacji mocy biernej.** Gospodarowanie energią elektryczną w hutach wymaga również kontrolowania poziomu pobieranej mocy biernej. Zabudowa układów kompensacji mocy biernej pozwoli zoptymalizować koszty i uniknąć opłat za energię bierną. [F]

- **Zabudowę wysokosprawnego kotła parowego.** Para wodna powstaje w hutach zarówno podczas niektórych procesów technologicznych (np. w kołowni zakładowej podczas suchego gaszenia koks), jak również jest wytwarzana niezależnie w kotłach parowych. Para jest stosowana w wielu wydziałach, np. w instalacjach odgazowania próżniowego stali, w blokach tlenowych, w urządzeniach hydraulicznych, jak również dla celów grzewczych. Zabudowa wysokosprawnego kotła parowego zmniejszy koszty wytwarzania pary oraz poprawi efektywność energetyczną. [F]

- **Zastosowanie przekształtnikowych układów sterowania do płynnej pracy pomp.** Niektóre z pracujących w hutach urządzeń, w tym również pompy, wymagają modernizacji. Poprzez zastosowanie proponowanego nowoczesnego układu sterowania do płynnej pracy pomp poprawiona zostanie efektywność energetyczna i zmniejszy się zużycie energii elektrycznej. [F]

- **Poprawę efektywności procesu spiekania rud w hutach zintegrowanych.** Działanie polega na optymalizacji technologii spiekania rude obejmującej: maksymalne (nawet do 100%) zastąpienie koksiku antracytem, nowy sposób podawania wapna pokarbidowego do mieszanki spiekalniczej oraz wzbogacanie powietrza spalania w tlen w procesie spiekania. Zwiększenie udziału węgla kamiennego względem koksdu spowoduje obniżenie zużycia koksdu, którego produkcja wiąże się z emisją gazów. Wskazane jest również zastosowanie nowego, o zwiększonym uzysku Ca, sposobu podawania wapna pokarbidowego do mieszanki spiekalniczej. Wzbogacanie powietrza spalania w tlen w procesie spiekania ma na celu
intensyfikację procesu oraz obniżenia szkodliwych emisji gazowych CO₂, CO, SO₂ i NOx. [F]

- **Racionalizację zużycia energii elektrycznej w zespołach napędowych poprzez zastosowanie falowników przy napędach o zmiennym zapotrzebowaniu.** Zastosowanie falowników (przemienników częstotliwości) ma na celu optymalizację wydajności eksploatacyjnej oraz racjonalizację zużycia energii elektrycznej zespołów napędowych o zmiennym zapotrzebowaniu. [F]

- **Wykorzystanie energii z redukcji ciśnienia gazu** (wielkopiecowego lub ziemnego) z zastosowaniem turbiny rozprężnej. Zastosowanie turbiny rozprężnej przy redukcji ciśnienia gazu w sieci gazu (wielkopiecowego lub ziemnego) umożliwia wytworzenie energii elektrycznej na własne potrzeby.[F]

- **Wykorzystanie ciepła odpadowego z chłodzenia spalin z pieców metalurgicznych** (stalowniczych, pieców grzewczych na walowniach i pieców do obróbki cieplnej stali). Dla przeprowadzenia przeróbki plastyckiej stali (np. walcowanie, kucie) oraz obróbki cieplnej (np. wyżarzanie) wsad musi być podgrzany do odpowiedniej temperatury, co jest realizowane w piecach grzewczych opalanych najczęściej gazem ziemnym. Powstające spaliny o wysokiej temperaturze powinny być chłodzone przed wypuszczeniem do atmosfery, a odzyskane ciepło z ich chłodzenia właściwie wykorzystane. Poprawiłyby to efektywność energetyczną przedsiębiorstwa. [F]

- **Wykorzystanie ciepła odpadowego z układów chłodzenia pieców hutniczych i innych instalacji hutniczych** (układ chłodzenia wanny w piecu łukowym i pancerzy pieców grzewczych, pompownie, stacje sprężarek, itp.). Procesy metalurgiczne są procesami przebiegającymi w wysokich temperaturach, przewyższających 1600 °C. Dla bezpieczeństwa ich pracy, urządzenia i instalacje hutnicze wymagają intensywnego chłodzenia. Woda z układów chłodzenia tych instalacji, o temperaturze ok. 60 °C może być wykorzystana (z zastosowaniem np. wymienników lub pomp ciepła) do poprawy efektywności energetycznej. [F]

- **Modernizację izolacji hutniczych rurociągów cieplnych, ciepłowniczych i technologicznych.** Rurociągi cieplne i technologiczne, by nie promieniowały ciepła do otoczenia, na całej ich długości są osłaniane okładziną z materiałów izolacyjnych. Modernizacja polega na założeniu nowej izolacji lub poprawie obecnej izolacji na hutniczych rurociągach cieplnych, ciepłowniczych i technologicznych. Skutkowałoby to mniejszym spadkiem temperatury przepływającego czynnika. Oszczędności z tego tytułu zależą od stanu technicznego hutniczych rurociągów cieplnych, ciepłowniczych i technologicznych. [F]

- **Modernizację grupowych i indywidualnych węzłów cieplnych i sieci ciepłowniczych.** Dzięki modernizacji sieci i węzłów ciepłowniczych (m.in. zastosowanie technologii rur preizolowanych, telemetrycznego systemu nadzoru pracy węzłów i sieci itp.) poziom strat ciepła podczas przesyłu będzie znacząco ograniczony. Poprawi to efektywność energetyczną. Inwestycja wymiany ok. 4000 m sieci cieplnej na terenie jednej z hut z tradycyjnych na preizolowane powinna przynieść wymierne efekty w zakresie redukcji strat ciepła w ilości 8600 GJ/rok. [F]
- Wymianę transformatorów energetycznych i technologicznych na transformatory o wyższej sprawności. Huty średnio rocznie zużywają ok. 6 TWh energii elektrycznej. Transformatory o wyższej sprawności pozwolą znacznie zmniejszyć zużycie energii elektrycznej w skali przedsiębiorstwa. Wymiana transformatorów dotyczy całego hutnictwa. [F]

Budownictwo

Budownictwo odpowiada – zależnie od warunków pogodowych w danym roku – za ok. 12% bezpośrednich emisji gazów cieplarnianych w Polsce. Jednocześnie budynki odpowiadają za około 40% końcowego zużycia energii, z czego ponad 2/3 zużywanej energii przypada na ciepło/chłód. Wskazuje to, że jednym z obszarów zainteresowania Programu w sektorze budownictwa powinien być miks paliwowy wykorzystywany do regulowania temperatury w budynkach, a także sprawność spalania paliw na cele grzewcze, zwłaszcza w przydomowych instalacjach. Drugim ważnym aspektem jest efektywność wykorzystywania dostarczonej do budynku lub wytworzonej w przydomowej instalacji energii. Mimo znacznego postępu w zakresie efektywności energetycznej budynków, który dokonał się od 1999 r., gdy rozpoczęto wdrażać program termomodernizacji budynków, możliwości ograniczenia zapotrzebowania na energię ze strony sektora budownictwa są wciąż duże.

Dla lepszego zobrazowania stanu obecnego warto posłużyć się wskaźnikiem ilości energii zużywanej na ogrzanie jednego metra kwadratowego powierzchni. Porównanie tego wskaźnika dla Polski do średniej unijnej (z uwzględnieniem zróżnicowania klimatu) wskazuje na utrzymywanie się niższej efektywności energetycznej polskich budynków, chociaż różnica ta konsekwentnie zmniejsza się. W 2011 r. zużycie energii na ogrzewanie pomieszczeń w UE wynosiło średnio 128 kWh/mkw z korektą klimatyczną, natomiast w Polsce wskaźnik ten kształtował się na poziomie 173 kWh/mkw.

Warto podkreślić, że poprawa efektywności energetycznej budynków nie zawsze będzie przekładała się na spadek bezwzględnego zużycia energii. W sytuacji gdy potrzeby grzewcze wśród biedniejszej części społeczeństwa nie są zaspokojone można zadekłać, że termomodernizacja budynków przełoży się na wyższą temperaturę w pomieszczeniach dziś niedogrzanych lub na ogrzewanie pomieszczeń dziś całkowicie nieogrzewanych. Proste przełożenie poprawy efektywności energetycznej budynków na spadek bezwzględnego zużycia energii będzie można zaobserwować dopiero gdy potrzeby grzewcze w Polsce zostaną w pełni zaspokojone (taka korelacja obserwowana jest od wielu lat w bogatszych państwach UE).

W sektorze budownictwa zostały wskazane 33 obszary (9% wszystkich zidentyfikowanych i opisanych obszarów). Połowa z nich to inwestycje kapitałowe oraz działania eksploatacyjne/nowe praktyki, natomiast 21% obszarów z działu budownictwo dotyczy działań legislacyjnych.

Celem Programu w obszarze budownictwa jest poprawa efektywności wykorzystywania energii w budynkach mieszkalnych i niemieszkalnych, skutkująca niższymi kosztami eksploatacyjnymi dla użytkowników budynków, a także zmniejszeniem emisji gazów cieplarnianych oraz tzw. niskiej emisji poprzez:

- zmianę miksu paliwowego wykorzystywanego do ogrzewania budynków;
- wprowadzenie systemu zachęt do wymiany starych instalacji grzewczych na instalacje nowego typu;
- wprowadzenie wyższych standardów termomodernizacji istniejących budynków;
- określenie standardów oraz wprowadzenie zachęt do uwzględniania kwestii efektywności energetycznej budynku już na etapie jego projektowania: popularyzacja domów pasywnych i zeroenergetycznych;
- wprowadzenie energooszczędnego oświetlenia budynków oraz miast;
- akcje edukacyjne wskazujące na wymierne korzyści ekonomiczne z korzystania z urządzeń elektrycznych o wyższej klasie energetycznej.

Teoretyczny potencjał redukcji emisji gazów cieplarnianych w obszarze budownictwa (biorąc pod uwagę wyłącznie działania na rzecz poprawy infrastruktury) wynosi w 2050 roku:

- 48% względu 1990 roku.

Osiągnięcie tego pułapu wiązałoby się jednak z poniesieniem kosztu 766 mld złotych w latach 2010-2050. Jednocześnie nie wszystkie działania technologiczne możliwe do realizacji mają uzasadnienie ekonomiczne.

Dzięki zidentyfikowanym w NPRGN działaniom poziomy redukcji emisyjności budownictwa w 2050 roku wynosi około 26 mln ton dwutlenku węgla w porównaniu do scenariusza bez podjęcia interwencji (wielkość ta stanowi około 50% emisji gazów cieplarnianych emitowanych przez sektor mieszkaniowy i budownictwa w 2010 roku). 44

Transformacja niskoemisyjna w sektorze budownictwa jest kluczowym przykładem zmian, która, jeśli dobrze zaplanowana, prowadzi do korzyści zarówno w obszarze społecznym, jak i gospodarczym oraz środowiskowym. Poprawa parametrów energetycznych budynków prowadzi do znacznego ograniczenia wydatków na zakup energii na cele grzewcze. Zmniejsza się zjawisko ubóstwa energetycznego. Następuje rozwój firm świadczących usługi w zakresie robót budowlanych. Generowane są nowe miejsca pracy zarówno w sektorach budowlanych, jak i w całej gospodarce na zasadzie efektu dzwigni.

Emisje w budownictwie związane są przede wszystkim ze spalaniem paliw na potrzeby konsumowanego w budynkach ciepła/chłodu i energii elektrycznej. Z tego względu niniejsze priorytety opisują jedynie wycinek działań do podjęcia w obszarze budownictwa, mających związek ze zrównoważoną produkcją, w tym kwestię standardów technicznych budynków. Pozostałe działania opisane zostały w ramach celu Niskoemisyjne wytwarzanie energii oraz, w odniesieniu do nawyków konsumentów energii mających wpływ na poziom jej zużycia, w ramach celu Promocja wzorców zrównoważonej konsumpcji.

44 Materiały analityczne wykonane na potrzeby NPRGN przez PwC oraz WISE.
8.3. **Priorytet C.3 Poprawa standardu energetycznego istniejących budynków**

W Polsce realizowany jest program termomodernizacji budynków, który wprowadzono już w 1999 r. na podstawie *Ustawy o wspieraniu przedsięwzięć termomodernizacyjnych*. Program ten ma na celu zapewnienie technicznego i finansowego wsparcia projektów w zakresie oszczędności energii w budynkach. Od 1999 r. do końca 2013 r. jego fundusz został zasilony kwotą 1 mld 555 mln zł. Z funduszu termomodernizacyjnego wypłacane są premie termomodernizacyjne, remontowe oraz kompensacyjne. W okresie 14 lat funkcjonowania *Ustawy termomodernizacyjnej* programem objęto w sposób bezpośredni kilkudziesięciu tysięcy budynków. Funkcjonowanie tej ustawy wywarło również pozytywny wpływ na standardy termomodernizacyjne w całym budownictwie, szczególnie jeśli chodzi o grubość izolacji cieplnej, która to wartość w praktyce wzrosła na przestrzeni 10 lat trzykrotnie. Programy nakierowane na poprawę zarządzania energią w budynkach prowadzi również Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej.

Mimo dobrego rozpoznania kwestii korzyści, jakie wiąза się z termomodernizacją, jak również wydatkowania znaczących środków na cel, wciąż istotna część potencjału termomodernizacyjnego pozostaje niewykorzystana. Eksperti zwracają uwagę, że publiczne wsparcie obejmuje dziś również termomodernizację wykonaną w standardzie, który spełnia co prawda minimalne normy, ale nie uwzględnia długookresowych trendów. Dodatkowo wciąż niewystarczająca jest skala przeglądów ex post oceniających efektywność podejmowanych działań.

W interesie publicznym jest dokonywanie termomodernizacji w standardzie wyższym niż efektywny ekonomicznie z punktu widzenia wąskiego interesu właściciela budynku. Dla właściciela korzystne jest podnoszenie standardu energetycznego do poziomu nakładów uzasadnionych oczekiwаниmi oszczędnościami energii w przyszłości. W tej kalkulacji nie uwzględnia się potrzeby minimalizacji kosztów zewnętrznych związanych z ogrzewaniem/ chłodzeniem budynków oraz szans związanych z pobudzeniem innowacyjności w obszarze budownictwa.

Działania w ramach priorytetu, ze względu na specyfikę poszczególnych rodzajów budynków, zostaną w uzasadnionych przypadkach przedstawione oddzielnie w odniesieniu do budynków prywatnych, użyteczności publicznej i budynków usługowych.

8.3.1. **Działanie C.3.1. Kontynuacja procesu termomodernizacji na nowych zasadach**

Kluczowym działaniem dla zmniejszenia zużycia energii w istniejących budynkach jest ich termomodernizacja. Dla jej optymalnej kontynuacji niezbędne jest:

- **Podniesienie wymagań dla budynków przeznaczonych do termomodernizacji, których właściciele starają się osiągnąć w ramach termomodernizacji ze środków publicznych.** Zgodnie z obecnymi przepisami, aby uzyskać tzw. premię termomodernizacyjną należy wykazać, że w wyniku termomodernizacji osiągnięte zostanie znaczące zmniejszenie rocznego zapotrzebowania na energię, a w szczególności:
- w budynkach, w których modernizuje się jedynie system grzewczy – co najmniej o 10%,
- w budynkach, w których po roku 1984 przeprowadzono modernizację systemu grzewczego – co najmniej o 15%
- w pozostałych budynkach – co najmniej o 25%,
- w lokalnych źródłach ciepła i lokalnej sieci ciepłowniczej – zmniejszenie rocznych strat energii pierwotnej co najmniej o 25%, a przy ich zastąpieniu przez przyłącze do scentralizowanego źródła ciepła (sieci miejskiej) – zmniejszenie kosztów zakupu ciepła dostarczanego do budynku co najmniej o 20% w stosunku rocznym.

Takie wymagania w praktyce oznaczają, że inwestycje termomodernizacyjne wykonywane są w minimalnym standardzie niezbędnym do osiągnięcia określonego progu dla danej kategorii budynków, natomiast nie z celem osiągnięcia maksymalnej korzyści ekonomicznej w całym cyklu życia budynku. Skutkiem takiego podejścia jest stosowanie do ocieplania ścian, a nawet dachów materiału izolacyjnego o grubości jedynie 5-8 cm, mimo, że koszt materiału izolacyjnego to zaledwie około 15% kosztów całej inwestycji termomodernizacyjnej. Tym samym marnowany jest potencjał oszczędności energii, który w przyszłości będzie bardzo trudno wykorzystać (konieczność zrywania zbyt cienkiej warstwy izolacji i wykonywanie całego procesu od nowa).

Dalszy proces termomodernizacji należy zatem prowadzić, wymagając od inwestorów korzystających ze wsparcia publicznego stosowania warstw ocieplających zoptymalizowanych wartością NPV>0 (wartość bieżąca netto). W związku z tym konieczna jest nowelizacja Rozporządzenia Ministra Infrastruktury z dnia 17 marca 2009 r. w sprawie szczegółowego zakresu i form audytu energetycznego oraz części audytu remontowego, wzorów kart audytów, a także algorytmu oceny opłacalności przedsięwzięcia termomodernizacyjnego (Dz. U. Nr 43, poz. 346). Określając wymagania, których spełnienie będzie uprawniało do skorzystania ze wsparcia publicznego należy zbalansować szanse związane z podniesieniem wymogów z zagrożeniami wynikającymi ze wzrostu kosztów jednostkowej modernizacji, co może spowolnić proces termomodernizacyjny.

Działania zoptymalizowane wartością NPV>0 należy tylko częściowo wspierać ze środków publicznych. Istotna część kosztów powinna być ponoszona przez inwestora, dla którego taka termomodernizacja jest ekonomicznie uzasadniona. Natomiast w wypadku określenia wymagań na poziomie skutkującym z punktu widzenia właściciela nieruchomości NPV≤0, dodatkowy wysiłek inwestycyjny, którego uzasadnieniem jest interes publiczny, a nie prywatny, powinien być sfinansowany ze środków publicznych. [TFL]

- **Opracowanie wytycznych i wymagań w zakresie zapewnienia jakości robót, usług i materiałów budowlanych w procesie termomodernizacji istniejących budynków.**

Corocznie w Polsce poddaje się termomodernizacji kilkadziesiąt tysięcy budynków, co powoduje istotne zmniejszenie ilości zużywanej energii do celów ogrzewania. Praktyka pokazuje jednak, że w przypadku podmiotów zarówno prywatnych, jak i jednostek samorządu terytorialnego kryterium decydującym o wyborze wykonawcy robót budowlanych i instalacyjnych jest cena, przy jednoczesnym braku po ich stronie wiedzy w zakresie wymagań dotyczących jakości i znajomości technologii budowlanych. Powoduje to,
że w wielu przypadkach jakość komponentów budowlanych i instalacyjnych oraz robót ocieplenioowych i instalacyjnych, jak również związanych z wymianą stolarki okiennej jest niska. Również efekty w postaci oszczędności energii i kosztów eksploatacyjnych, redukcji emisji CO₂ są niższe od zakładanych, a trwałość efektów, jak również estetyka i walory użytkowe nie są zachowane. Wykonane w trakcie prac ocieplenia niejednokrotnie trzeba w krótkim czasie wymieniać ponownie, a niska jakość i estetyka robót są wyraźnie widoczne po krótkiej eksploatacji. Biorąc pod uwagę powyższe, pożądane jest doprecyzowanie wymagań oraz rozpowszechnienie informacji w zakresie wymagań jakościowych dotyczących komponentów budowlanych i procesu budowlanego, związanych z procesem termomodernizacji oraz odpowiednich procedur i wytycznych dotyczących ich wdrażania i egzekwowania przez nadzór budowlany i kierowników robót. [U L]

- Poprawa jakości przeprowadzanych audytów energetycznych poprzez wzmocnienie nadzoru i upowszechnianie dobrych praktyk. Jakość audytu, mimo sformalizowanej procedury i przewidzianej weryfikacji jego wyników pozostaje niejednokrotnie bardzo niska, o czym świadczy odbieganie wyników niektórych audytów od wyników późniejszych audytów nawet o 30-40%. Powszechna praktyka wybierania wykonawcy zamówienia publicznego w oparciu o kryterium ceny prowadzi do tego, że audyty zawierają niemożliwe do zweryfikowania fałszywe dane lub generowane są automatycznie przez wyspecjalizowane, ale wysoce niedoskonałe oprogramowanie. Z punktu widzenia inwestora żele przeprowadzony audyt ma poważne konsekwencje ekonomiczne, gdyż fałszywe obraz możliwych do osiągnięcia oszczędności związanych z termomodernizacją. Wobec powyższego niezbędne jest upowszechnianie dobrych praktyk audytowych, jak również stopniowe wprowadzanie automatyzacji audytu, jednak pod warunkiem wykorzystywania oprogramowania o marginesie błędu nie wyższym niż 10%. [U]

- Stworzenie realnego systemu wsparcia dla działań termomodernizacyjnych w budynkach indywidualnych, w których występuje na poziomie potencjału wzrostu efektywności energetycznej w budownictwie. W przypadku niestworzenia dedykowanego programu wsparcia dla termomodernizacji budynków jednorodzinnych, potencjał ten nadal pozostanie niewykorzystany. Brak uproszczonych procedur dla inwestorów indywidualnych stanowi barierę, która de facto blokuje termomodernizację budynków indywidualnych. [F]

- Włączenie mieszkańców w proces termomodernizacji celem optymalizacji ich zachowań względem wymogów zmodernizowanego budynku. Brak wiedzy mieszkańców o procesie termomodernizacji prowadzi do nieoptymalnych zachowań po zakończeniu inwestycji, tj. przegrzewania mieszkań oraz nieracionalnego korzystania z wentylacji. Często takie zachowanie mieszkańców w dużym stopniu niweluje efekty inwestycji. Z tego powodu w państwach rozwiniętych opracowano procedury angażujące mieszkańców w proces inwestycyjny, co skutecznie ogranicza wspomniane zachowania. Wymaga to jednak nakładów na wypracowanie i upowszechnienie dobrych praktyk. Doświadczenia państw zachodnich pokazują, że powiązanie procesu termomodernizacji z przeprowadzaniem ankiet wśród mieszkańców (przed i po zrealizowaniu inwestycji) w istotnym stopniu zwiększa ich rozumienie procesu, a ponadto intensyfikuje zaangażowanie. Proponuje się ustanowienie przeprowadzania ankiet lokatorskich obowiązkowym elementem termomodernizacji wspieranej ze środków publicznych. [U F]
Uzależnienie udzielania wsparcia publicznego na modernizację budynków użytkeczności publicznej i budynków wielorodzinnych od wdrożenia systemu zarządzania energią (EnMS). Wdrożenie systemu jest jednym z warunków efektywnego gospodarowania energią w zmodernizowanym budynku. Brak wdrożenia odpowiedniej normy (np. ISO 50001) znacznie obniża rzeczywiste efekty termomodernizacji.

Przeanalizowanie technicznych możliwości i ekonomicznej zasadności wyposażania termomodernizowanych budynków w wentylację z rekuperacją. Zastąpienie wentylacji mechanicznej wentylacją nawiewno-wyławową z rekuperacją wiąże się z poprawą jakości powietrza w budynkach oraz oszczędnością energii. Zwiększa w przypadku przejścia na wyższe niż przewidziane obecnie w prawie standardy energetyczne, niezbędne dla ich spełnienia w procesie termomodernizacji może okazać się instalowanie wentylacji z rekuperacją. Pożądane jest zatem przeanalizowanie, jakie warunki musi spełniać modernizowany budynek, aby poprawny montaż wentylacji z rekuperacją był możliwy oraz ekonomicznie uzasadniony. Szczególny nacisk w analizie należy położyć na budynki z wielkiej płyty.

Rozważenie stworzenia systemu wsparcia działań termomodernizacyjnych dedykowanego dla istniejących budynków usługowych, biurowych, handlowych. W niektórych krajach, mając na względzie specyfikę budynków usługowych czy przemysłowych, opracowywane są dedykowane systemy wsparcia działań termomodernizacyjnych wyłącznie dla tej grupy podmiotów. W Polsce nie istnieją osobne mechanizmy wsparcia działań w zakresie termomodernizacji budynków w sektorze przemysłowym, handlowym i usług. Konieczne są dodatkowe analizy tego obszaru, które odpowiedzą na pytanie, czy w polskich warunkach zasadne jest wyodrębnienie tej grupy podmiotów z ogólnego funduszu termomodernizacyjnego.

Powiązanie rewitalizacji budynków zabytkowych z poprawą ich efektywności energetycznej. Proces poprawy efektywności energetycznej powinien obejmować także zabytkowe budynki, które pełnią funkcję publiczną lub mieszkalną. Planowanie rewitalizacji budynków zabytkowych jest właściwym momentem, aby w procesie inwestycyjnym uwzględnić ich poprawę efektywności energetycznej. Określenie jasnych wytycznych i procedur diagnozowania, projektowania i realizacji rewitalizacji zabytkowych budynków z uwzględnieniem efektywności energetycznej, w tym termomodernizacji, ułatwi podejmowanie decyzji inwestycyjnych. Przywrócenie właściwej funkcjonalności i efektywności energetycznej budynków mieszkalnych korzystnie wpłynie na zabezpieczenie potrzeb lokalnych ludności oraz budynków użytkowości publicznej – na potrzeby związanych z innymi dziedzinami życia społecznego. Wchwili obecnej praktycznie nie istnieją mechanizmy wsparcia działań w zakresie rewitalizacji budynków zabytkowych z uwzględnieniem efektywności energetycznej, w tym termomodernizacji. Nie zostały opracowane jednodrożne i jednoznaczne procedury i algorytmy postępowania w rewitalizacyjnych zadaniach inwestycyjnych. Dodatkowym utrudnieniem jest brak wiedzy konserwatorów zabytków o możliwościach i korzyściach związanych z poprawą charakterystyki energetycznej zabytkowego budynku.

Niezbedne jest budowanie bazy dobrych praktyk i szkolenie konserwatorów zabytków, aby nie marnować potencjału oszczędności energii zawartego w zabytkowych budynkach oraz nie
prowadzić do ich degradacji (co może być efektem źle przeprowadzonej termomodernizacji).

[U]

8.3.2. Działanie C.3.2. Inne działania zmniejszające zużycie energii w istniejących budynkach

W celu wykorzystania całego potencjału oszczędności energii jaki możliwy jest do osiągnięcia w istniejących budynkach, poza termomodernizacją pożądane są:

- **Badania nad rzeczywistymi efektami działań w dziedzinie efektywności energetycznej w budynkach.** Pożądane jest przeprowadzenie badań dla określenia rzeczywistych efektów dotychczas wdrożonych działań na rzecz poprawy efektywności energetycznej, takich jak termomodernizacja budynków, zastosowanie urządzeń energooszczędnych, wymiana oświetlenia, instalacja kontroli ogrzewania, itp. oraz ich kombinacji dla różnych rodzajów budynków oraz dla różnych wzorców zachowań mieszkańców/pracowników. W celu oceny efektywności energetycznej wdrożonych działań należy stworzyć kilka kategorii mieszkańców, np. emeryci (wymagający ogrzewania 24/7), ludzie w wieku produkcyjnym, rodziny z dziećmi, itd. Pozwoli to na priorytetyzację przyszłych działań ze względu na ich efektywność, a tym samym na uniknięcie lokowania środków w obszarach o niskich lub nieznaczących efektach. Z kolei analiza łańduch dowiąz, która może być przeprowadzona równolegle, pozwoli określić czy potrzebne materiały były importowane, czy też zostały wyprodukowane w Polsce. Badania przeprowadzone w Wielkiej Brytanii wykazały, że rzeczywiste korzyści z poprawy efektywności energetycznej w budynkach są o ok. 50% niższe niż szacunki dokonywane z wykorzystaniem modeli energetycznych przed przystąpieniem do inwestycji. [T]

- **Tworzenie tzw. sieci wiedzy.** Pożądane jest propagowanie najlepszych praktyk we wszystkich obszarach efektywności energetycznej budynków. Dzielnie się najlepszymi praktykami ułatwia właścicielem i zarządzającym budynkami wybór najbardziej efektywnych kosztowo i środowiskowo strategii poprawy efektywności energetycznej. [U T]

8.4. Priorytet C.4 Poprawa standardu energetycznego nowobudowanych budynków

W ostatnich latach obserwuje się w wielu krajach unijnych szybki rozwój budownictwa niskoenergetycznego i pasywnego. Tymczasem w Polsce wybudowano dotychczas kilkanaście budynków w tak zwany standard pasywny (zużycie energii użytkowej poniżej 15 kWh/m²/rok) oraz kilka tysięcy w standardzie niskoenergetycznym (EU na poziomie od 30 do 60 kWh/m²/rok). To niedużo biorąc pod uwagę skalę zjawiska w Europie Zachodniej.

Tymczasem inwestowanie w bardziej wydajne energetycznie budynki ma pozytywny wpływ zarówno na całą gospodarkę poprzez wzrost innowacyjności, tworzenie nowych miejsc pracy, czy poprawę bezpieczeństwa energetycznego, ale także na podmioty gospodarcze i społeczeństwo poprzez niższe w długiej perspektywie wydatki na energię. Wśród głównych zalet budynków niskoenergetycznych i pasywnych z perspektywy mieszkańców należy wskazać:
- wyższy komfort mieszkania, który wynika z optymalnej temperatury panującej w pomieszczeniach oraz lepszego powietrza, które jest skutecznie filtrowane dzięki efektywnej wentylacji;
- poprawa jakości powietrza w skali lokalnej;
- korzyści zdrowotne związane ze zmniejszonym ryzykiem niedogrzania pomieszczeń ze względów finansowych, co ma znaczenie zwłaszcza w wypadku osób starszych i słabiej uposażonych.

Głowną przyczyną wolniejszego rozwoju budownictwa niskoenergetycznego i pasywnego w Polsce jest powszechne przekonanie inwestorów o wyższych kosztach budowy takich obiektów. Eksperty oceniają jednak, że wyższe koszty wynikają w dużym stopniu z błędów projektowych oraz niskiej jakości prac budowlanych, co można wyeliminować poprzez lepsze przygotowanie architektów oraz wyższą jakość wykonawstwa.

Mimo, że początkowy kapitał potrzebny do budowy domu niskoenergetycznego/pasywnego jest wyższy niż w wypadku domu tradycyjnego, to taka inwestycja ma uzasadnienie ekonomiczne, jeśli uwzględnimy średni koszt utrzymania budynku w całym cyklu jego życia. Dotyczy to również sytuacji budowy domu na kredyt, pod warunkiem, że wyższe nakłady początkowe nie pozbawiają inwestora zdolności kredytowej.

Oprócz oczywistych korzyści społecznych (niższe wydatki na energię), gospodarczych (nowe miejsca pracy, wzrost PKB) i środowiskowych (niższe emisje związane ze spalaniem paliw), dodatkową przesłanką do stworzenia kompleksowego systemu wsparcia dla budynków pasywnych i niskoenergetycznych jest legislacja unijna. Zmodernizowana Dyrektywa 2010/31/UE w sprawie charakterystyki energetycznej budynków zobowiązuje państwa członkowskie do stworzenia takich warunków prawnych i rynkowych, aby od 31 grudnia 2020 r. wszystkie nowo powstałe budynki prawie nie zużywały energii. W przypadku budynków zajmowanych przez władze publiczne oraz stanowiących ich własność ma to nastąpić jeszcze wcześniej, bo już od 31 grudnia 2018 r.

Warto zaznaczyć, że filozofia dyrektywy opiera się na założeniu, że budowane budynki powinny spełniać wymagania określone w sposób zapewniający osiągnięcie optymalnej pod względem kosztów równowagi między wymaganymi nakładami a kosztami energii zaoszczędzonymi podczas cyklu życia budynku, przy czym prawo określenia ile lat wynosi cykl życia budynku zostało zarezerwowane dla państw członkowskich. W praktyce oznacza to, że określony standard powinien stymulować do działań racjonalnych ekonomicznie, a z drugiej strony nie może być zbyt niski, aby potencjał redukcji emisji w budownictwie nie został niewykorzystany mimo zapewnionej efektywności ekonomicznej. Z tej perspektywy należy przeanalizować rozwiązania obecnie przyjęte w prawie.

8.4.1. Działanie C.4.1. Poprawa warunków horyzontalnych dla rozwoju budynków o niskim zużyciu energii

Zaostrajające się wymogi dotyczące parametrów energetycznych nowobudowanych budynków tylko w pewnym stopniu przekładają się na lepsze charakterystyki cieplne budynków nowych. W celu zmiany tego stanu niezbędne jest:
• **Podniesienie wiedzy projektantów z zakresu niskoenergetycznych budynków.** Brak odpowiedniej wiedzy projektantów i architektów prowadzi do błędów w projektach przegród zewnętrznych, wentylacji, czy instalacji grzewczych. Skutkuje to powstawaniem mostków cieplnych, nieefektywną i głośną pracą wentylacji oraz niedostosowaniem mocy grzewczej do potrzeb niskoenergetycznego budynku. Oprócz tworzenia baz wiedzy oraz propagowania przykładowych efektywnych energetycznie projektów w branży architektów, konieczne jest wprowadzenie Zachęt dla architektów do odbywania szkoleń z zakresu efektywności energetycznej budynków. Należy rozważyć wprowadzenie certyfikatu poświadczającego posiadanie wiedzy projektantów z zakresu niskoenergetycznych budynków, który byłby warunkiem dalszego wykonywania zawodu architekta od 1 stycznia 2017 r. (gdy wchodzą w życie zastrżone wymogi dla nowych budynków). [U L]

• **Podniesienie poziomu wykonawstwa i nadzoru.** Jakość wykonawstwa ma kluczowe znaczenie dla dorobienia parametrów budynku określonych w projekcie. Najczęstsze błędy dotyczą wykonania izolacji termicznych i przeciwwilgociowych, ale także braku szczelności ścian, stropów czy poddaszy. Brak specjalizowanej wiedzy po stronie inwestorów powoduje, że często nie są oni w stanie ocenić jakości wykonanej pracy, a dodatkowo łatwo ulegają sugestiom wykonawców co do potrzeby odstąpienia od założeń projektowych. Oprócz podnoszenia poziomu wiedzy inwestorów (co będzie się przekształciło na ich zwiększone oczekiwania co do jakości wykonywanych prac) należy podnieść jakość nadzoru. Rola kierownika budowy nie powinna ograniczać się do kwestii formalnych, ale powinna polegać na faktycznym nadzorze na każdym etapie prac budowlanych. Podobnie jak w wypadku projektantów należy rozważyć wprowadzenie certyfikatu poświadczającego posiadanie wiedzy z zakresu niskoenergetycznych budynków, którego posiadanie będzie uprawniało do wypełniania roli kierownika budowy po 1 stycznia 2017 r. [U L]

• **Określanie wymaganych parametrów energetycznych nowych budynków w odniesieniu do zużycia energii końcowej (EK), a nie pierwotnej (EP).** Posługiwanie się wskaźnikiem EP dla zdefiniowania standardów energetycznych, które powinny spełniać budynki, może prowadzić do sytuacji, gdy budynki o niskich parametrach efektywności energetycznej, wyłącznie dlatego, że korzysta w znacznjej części z energii odnawialnej, nie spełniają wymaganych standardów energetycznych. Istnieją bardziej efektywne narzędzia stymulowania wykorzystania OZE w budynkach, które jednoznacznie prowadzą do marnotrawienia energii odnawialnej. Standardy powinny określać poziom ochrony cieplnej w budynkach i koszty energetyczne zaspokojenia podstawowych potrzeb bytowych mieszkańców w odniesieniu do energii końcowej w budynkach. [L]

8.4.2. **Działanie C.4.2. Przegląd warunków technicznych stawianych nowym budynkom**

Zgodnie z Dyrektywą 2010/31/UE w sprawie charakterystyki energetycznej budynków państwa członkowskie odpowiedzialne są za określenie minimalnych wymagań dotyczących charakterystyki energetycznej budynków i elementów budynków. Wymagania te powinny zostać określone w sposób zapewniający osiągnięcie optymalnej ochrony cieplnej pod względem kosztów równowagi między wymaganymi nakładami a kosztami energii zaoszczędzonymi podczas cyklu życia budynku (...). Oznacza to, że podstawową wytyczną dla określania minimalnych wymagań dla nowobudowanych budynków jest rachunek ekonomiczny uwzględniający zarówno początkowe nakłady, jak i późniejsze koszty eksploatacji. Zadaniem legislatora jest zatem określenie standardów najtańszych dla konsumenta
w całym cyklu życia budynku. Z tej perspektywy należy przeanalizować rozwiązania przewidziane w istniejących regulacjach, mając na uwadze postępujący rozwój technologii oraz szanse dla innowacyjności związane z określeniem standardów na odpowiednio wyższym poziomie niż wynikający z zastosowania najpowszechniej wykorzystywanych obecnie materiałów i technologii.

W celu określenia parametrów dla nowych budynków na poziomie optymalnym kosztowo z perspektywy inwestora pożądane jest:

- **Zaostrzenie wymagań dotyczących grubości przegród w budynkach.** Zdaniem ekspertów nie ma żadnych technicznych przeszkód, aby wprowadzić standard dla przegród w nowych budynkach na poziomie 0,1 (w budynkach modernizowanych może to nie być zawsze technicznie możliwe). Jednocześnie oszczędności zużycia energii związane z zastosowaniem przegrody o lepszej izolacji wydają się uzasadnicie poniesienie nieznacznie większych nakładów na etapie budowy. [T]

- **Powtórna analiza standardów energetycznych dla nowobudowanych budynków**, pod kątem ewentualnego ich zaostrzenia. Obecne przepisy pozwalają spełnić wymagania stawiane budynkom jedynie w oparciu o wykorzystanie znanych już technologii i rozwiązań. Tym samym nie stanowią bodźca dla rozwoju innowacyjności w obszarze niskoemisyjnych budynków i zachęty do wdrażania polskiej myśli technicznej i naukowej w dziedzinie efektywności energetycznej. Takie zachęty są bardzo pożądane z punktu widzenia długookresowej konkurencyjności gospodarki. Jednocześnie przedmiotowe standardy wymagają analizy pod kątem prawidłowego odzwierciedlenia zasady, że budynek powinien być skonstruowany w standardzie gwarantującym najniższe koszty w całym cyklu życia. [F]

- **Stworzenie systemu wsparcia dla wyposażania nowobudowanych lub modernizowanych budynków w wentylację nawiewno-wywiewną z rekuperacją.** Obecnie przepisy dopuszczają budowanie domów mieszkalnych z instalacją wentylacji grawitacyjnej nie wymagając od projektantów potwierdzenia, że zaprojektowany budynek spełni wymagania dotyczące minimalnych strumieni powietrza wentylacyjnego, co powoduje, że pomieszczenia są powszechnie niewłaściwie wentylowane. Jednocześnie w budynkach mieszkalnych o przegrodach zewnętrznych o współczynnikach przenikania odpowiadających obecnie obowiązującym normom do 70% energii użytkowej służy pokryciu strat ciepła na wentylację – wysokosprawna wentylacja nawiewno-wywiewna z rekuperacją pozwala odzyskać do 85% ciepła zawartego w wywiewanym powietrzu. Biorąc pod uwagę powyższe, zasadne wydaje się wprowadzenie systemu wsparcia dla upowszechnienia stosowania wysokosprawnej wentylacji mechanicznej nawiewno-wywiewnej zarówno w budynkach nowych, jak i modernizowanych. Analizy wymaga ponadto zasadność ustanowienia obowiązku wyposażania nowobudowanych budynków w wentylację z rekuperacją, jeśli jest to zgodne z logiką obniżania kosztów sumarycznych związanych z budową i eksploatacją budynku w cyklu jego życia. [F]

Rolnictwo

Rolnictwo wyróżnia się na tle innych sektorów zróżnicowaniem źródeł emisji gazów cieplarnianych (spalanie paliw kopalnych w celach energetycznych, emisja podtlenku azotu wynikająca z naważenia gleb, emisje z procesu fermentacji jelitowej oraz z odchodów zwierząt hodowlanych), a jednocześnie zdolnością wiązania dwutlenku węgla, a tym samym jego redukcji.
Zrównoważone rolnictwo może nie tylko poprawić efektywność energetyczną oraz zasobową gospodarki, ale też przyczynić się do obniżenia jej wpływu netto na środowisko. Wdrażanie zrównoważonych praktyk rolniczych, pozwalaćcych na niskoemisyjny rozwój tego sektora, wymaga jednak od gospodarstw rolnych podjęcia wysiłku finansowego i organizacyjnego na początku tego procesu.

W tym kontekście istotną barierą jest rozdrobnienie polskiego rolnictwa, co hamuje upowszechnianie najlepszych praktyk i nie pozwala osiągnąć efektów skali. W dużych państwach Europy Zachodniej dominują gospodarstwa rolne o powierzchni przekraczającej 50 ha, tymczasem w Polsce nadal ok. ¼ gruntu zajmują gospodarstwa ponizej 10 ha. Ten stan zmienia się stopniowo wraz z restrukturyzacją rolnictwa, wspieraną przez bodźce ekonomiczne i regulacyjne (Wspólna Polityka Rolna). Proces ten sprzyja obniżeniu emisyjności wartości dodanej powstającej w rolnictwie i poprawie jego efektywności. Fakt ten nie powinien jednak prowadzić do wniosku o konieczności likwidacji mniejszych gospodarstw, zwłaszcza ze względu na walory małoskalowej produkcji ekologicznej.

Produkcja rolna w Polsce ustępuje krajom Europy Zachodniej pod względem poziomu mechanizacji produkcji. W przyszłości należy spodziewać się zmian w tym zakresie, w związku z już ujawniającym się trendem dążenia do zastępowania produkcji pracochłonnej – bardziej wydajnej energetycznej i kapitałochłonnej. Mechanizacja, połączona z przewidywaną konsolidacją gospodarstw, przyczynią się do uwolnienia rezerw siły roboczej, która będzie mogła być wykorzystana w innych sektorach.

Należy odnotować, że emisje gazów cieplarnianych z gleb rolnych, fermentacji jelitowej oraz odchodów zwierzęcych są znacznie trudniejsze do dokładnego oszacowania niż emisje ze spalania paliw kopalnych, czy emisje procesowe z zakładów przemysłowych.

W ramach prac nad Programem zidentyfikowano 57 obszarów w dziale rolnictwo i rybacko, co stanowi 15% wszystkich obszarów, tym samym wskazując na dużą wagę sektora w procesie przechodzenia na gospodarkę niskoemisyjną. Nie ma jednej dominującej kategorii działań we wspomnianym sektorze, ale znaczna większość (4/5) zgromadzona jest w 3 kategoriach: inwestycje kapitałowe (29%), działania eksploatacyjne i nowe praktyki (27%) oraz B+R i dzielenie się wiedzą (24%). Dane te wskazują na kompleksowość działań do podjęcia w tym sektorze.

Celem Programu w obszarze rolnictwa jest wsparcie sprawnego przeprowadzenia procesu restrukturyzacji rolnictwa w kierunku niskoemisyjnym oraz systematyczna promocja zrównoważonych praktyk rolniczych.

Istotnym zjawiskiem z punktu widzenia potencjału do modernizacji i wdrażania zrównoważonych praktyk w polskim rolnictwie będzie jego restrukturyzacja w kierunku większych gospodarstw rolnych, jednak bez szkodzi dla rozwoju małoskalowej produkcji ekologicznej. Przewiduje się, że proces ten będzie zachodził stopniowo aż do roku 2050, napędzany przez czynniki ekonomiczne, demograficzne i bodźce regulacyjne. Tym samym w 2050 r. struktura polskiego rolnictwa będzie zbliżona do ogólnoeuropejskiej, z dominacją dużych gospodarstw rolnych.

Dwa kluczowe dla niskoemisyjnego rozwoju polskiego rolnictwa obszary to przejście do bardziej przyjaznych dla środowiska i zasoboszczędnych praktyk w zakresie zarządzania glebami oraz hodowlą zwierząt. Konsekwentne promowanie zrównoważonych praktyk gospodarowania w polskim rolnictwie pozwoli na stopniowe redukowanie negatywnego wpływu tego sektora na środowisko.
środowisko bez konieczności ograniczania skali jego działalności. Ocenia się, że w wyniku tych działań (szacunki jednostkowego potencjału obniżenia emisji CO₂ gleb oparto na szacunkach przedstawionych w Czwartym Raportcie IPCC, po skorygowaniu o wyniki krajowych badań) nastąpi zwiększenie pochłaniania dwutlenku węgla, a także ograniczanie emisji metanu oraz podtlenku azotu z upraw gleb oraz hodowli zwierząt, przyczyniając się do redukcji emisji GHG w polskim rolnictwie o 35% względem 1990 r. do 2030 r. oraz o ponad połowę do 2050 r.

8.5. Priorytet C.5 Rozwój zrównoważonej produkcji w rolnictwie

Celem Programu w obszarze rolnictwa jest wsparcie sprawnego przeprowadzenia procesu restrukturyzacji rolnictwa w kierunku niskoemisyjnym oraz systematyczna promocja zrównoważonych praktyk rolniczych, np. w zakresie uprawy gleby oraz hodowli zwierząt.

Wśród działań opisanych w niniejszym priorytecie znajdują się: zrównoważone zarządzanie gospodarstwem rolnym (w tym zwiększenie efektywnego wykorzystania energii w gospodarstwie rolnym), wdrażanie nowoczesnych metod uprawy oraz wdrażanie nowoczesnych metod chowu zwierząt.

W przypadku rolnictwa, ograniczanie energochłonności jest trudniejsze niż w przypadku sektora przemysłu, a dodatkowo emisje spadają wolniej niż zużycie energii. Jest to skutkiem tego, że znaczna ich część pochodzi z chowu zwierząt (z odchodów zwierząt i fermentacji żołądkowej), gdzie ograniczenie emisji wymagałoby zmiany biochemii zwierząt, a to byłoby nadmierną ingrencją w ich genotypy. Ocenia się, że jest to trudniejsze niż wprowadzanie bardziej energooszczędnych rozwiązań, np. w przemyśle chemicznym czy stalowym. Jest to ponadto stosunkowo kosztowne.

Jedną z głównych dziedzin mających największy potencjał dla wprowadzania innowacji niskoemisyjnych jest agrotechnika. Najistotniejszym rozwiązaniem zalecanym w przypadku agrotechniki jest zmiana sposobu nawożenia, tak by ilość węgla w glebie nie maleła, a nawet rosła. Praktyki takie jak odpowiednie zmianowanie czy pozostawianie resztek na polach pozwalają zatrzymywać węgiel w glebie, dodatkowo pozwalając ograniczyć zużycie nawozów chemicznych i emisji tlenku azotu z gleby. To ostatnie nie jest bez znaczenia zważywszy, że potrzeba aż 298 ton CO₂ aby zrównoważyć emisję 1 tony N₂O. Dodatkowo wprowadzenie praktyk tego typu pomaga już od pierwszego roku stosowania uzyskać znaczącą poprawę jakości gleb. Nakłady na tego typu
interwencje (tj. praktyki powodujące zatrzymywanie węgla w gruncie i glebie) szacowane są na 214 mln euro rocznie w 2035 r. i 1,1 mld euro rocznie w 2050 r.45

Patrząc od strony typu działań, istotne miejsce zajmują te dotyczące podniesienia świadomości, nt. stosowania nowych technologii rolniczych czy dobrych praktyk (np. w zakresie zwiększenia produktywności). Kluczowe wydaje się przekonanie rolników do szans wynikających z wdrożenia zaproponowanych rozwiązań. Korzyści te występują zawsze w dłuższym okresie, niekiedy także nie wymagając większych wydatków na starcie. Często w pierwszych latach gospodarstwa muszą zaangażować środki finansowe w związku z zakupem np. nowych maszyn. Jednakże w późniejszych latach zauważalne są wymierne korzyści wynikające np. ze zmniejszenia zużycia paliwa i mniejszych nakładów pracy na wykonanie zabięcia uprawowego, przy jednoczesnych efektach ekologicznych polegających na ograniczeniu emisji spalin i gazów cieplarnianych.

Oprócz działań omówionych poniżej w ramach tego priorytetu, istotne znaczenie dla sektora mają działania dotyczące rozwoju niskoemisyjnych źródeł energii w gospodarstwach rolnych (np. biogazowni, dzięki którym można pozyskać dodatkową energię do zasilania nowoczesnych maszyn rolniczych – w prioryrecie dotyczącym energetyki) lub racjonalnego wykorzystania odpadów chowu zwierząt i resztek pozniwnych (np. do nawozenia – w prioryrecie dotyczącym odpadów).

8.5.1. **Działanie C.5.1. Zrównoważone zarządzanie gospodarstwem rolnym**

Zrównoważone zarządzanie gospodarstwem rolnym, w tym zwiększenie efektywnego wykorzystania energii w gospodarstwie rolnym, proponuje się osiągnąć dzięki:

- **Lepszemu wyposażeniu budynków inwentarskich w urządzenia i mechanizmy**, które są bardziej wydajne, a jednocześnie bardziej przyjazne dla środowiska, np. systemy wentylacyjne lub oświetlenie, także na etapie projektowania budynku. Obecnie szeroko stosowane są mechaniczne systemy wentylacyjne oparte na pracy wentylatorów. Proponuje się rozwiązania, które pozwalamy zastąpić wentylację mechaniczną odpowiednio zmodyfikowanym systemem wentylacji grawitacyjnej połączonej dodatkowo z zastosowaniem fitoremediacyjnych właściwości roślin w oczyszczaniu powietrza z toksycznych gazów i pyłów. Przeprowadzone wstępne badania wykazały wysoką skuteczność rozwiązania niezależnie od warunków pogodowych. Stwierdzono obniżenie poziomu dwutlenku węgla w powietrzu średnio o 30%, amoniaku o 40%, a pyłów o 18%. Należy również podkreślać rolę odpowiedniego oświetlania dla prawidłowego rozwoju zwierząt oraz wspierać projektowanie budynków inwentarskich, które pozwala wykorzystać naturalne promieniowanie słoneczne, tzn. takie, by okna wychodziły na wschód i zachód dając oświetlenie całego budynku (oś główna budynku biegnie wzdłuż osi północ-południe). Innym rozwiązaniem jest zmniejszenie powierzchni kanałów gnojowych oraz rusztów w podłogach szczelinowych w bezściółkowym chowie bydła mlecznego i trzody chlewnej, co przekłada się przede wszystkim na redukcję emisjiodorów i gazów szkodliwych, takich jak amoniak i gazy cieplarniane (w szczególności metan i podtlenek azotu). \[U\]

45 Bukowski M. (red.), 2050.pl – podróż po niskoemisyjnej przyszłości, Warszawa 2013, s. 106.
Zwiększeniu efektywności wykorzystania maszyn rolniczych w gospodarstwach rolnych. Według wyników Powszechnego Spisu Rolnego 2010 w gospodarstwach rolnych znajdowało się 1,5 mln ciągników rolniczych, tj. o 9,9% więcej niż w 2002 r. Przy zmniejszonej ilości gospodarstw i jednoczesnym spadku powierzchni użytków rolnych, średnia powierzchnia przypadająca na jeden ciągnik zmniejszyła się w stosunku do wyników poprzedniego spisu i wynosiła 10,6 ha użytku rolnego w 2002 r. Zwiększenie efektywności może w takiej sytuacji polegać m.in. na dostosowaniu wydajności maszyny lub mocy ciągnika rolniczego do rozmiarów i intensywności prowadzonej działalności produkcyjnej, także na zastosowaniu w gospodarstwach wyspecjalizowanych maszyn rolniczych w postaci zagregowanych zestawów maszynowych. Zintegrowana praca maszyn wpływa na oszczędność czasu oraz ograniczenie zużycie paliwa, które wiąże się z obniżeniem emisji spalin i dwutlenku węgla. [U]

- Wykorzystywanie w procesie produkcji maszyn i urządzeń o najwyższej klasie energetycznej. Dostępne obecnie na rynku maszyny i urządzenia o najmniejszej energochłonności ciągle jeszcze charakteryzują się stosunkowo wysoką ceną zakupu, a właścicielom zwłaszcza mniejszych i mniej zasobnych gospodarstw trudniej jest bez wsparcia myśleć w perspektywie długofalowych zysków wynikających z użytkowania efektywnych urządzeń. Niezbędne są więc działania promujące oraz system wsparcia finansowego, w celu zwiększenia dostępności dla rolnictwa maszyn i urządzeń o najwyższej klasie energetycznej. W średnim okresie może wystąpić przewaga kosztów, ze względu na konieczne inwestycje oraz działania edukacyjne, które w dłuższym okresie czasu przyniosą wymierne zyski wynikające ze zmniejszenia zużycia surowców (węgla, gazu, oleju napędowego itp.). [U F]

- Zwiększeniu możliwości korzystania przez rolników z usług doradczych oraz wdrażanie zaleceń wskazanych przez doradców w zakresie poprawy efektywności energetycznej. Usługi mogłyby obejmować takie kwestie jak np. zasady oszczędności zużycia energii w gospodarstwie, dokonanie audytu termomodernizacyjnego i remontowego budynków, ocenę efektywności inwestycji energooszczędnych. [U F]

- Upowszechnianiu ekologicznej produkcji rolnej. Rolnictwo ekologiczne to sposób gospodarowania zmniejszający zależność od nakładów zewnętrznych poprzez stymulowanie biologicznych mechanizmów produkcyjnych w obrębie gospodarstwa. Rolnictwo ekologiczne radykalnie ogranicza stosowanie środków wytworzonych lub przetworzonych przemysłowo, nawet jeśli mają podobne oddziaływanie do substancji występujących w przyrodzie. Założeniem tego systemu jest naśladowanie procesów zachodzących w naturalnych ekosystemach – zarówno jeśli chodzi o aspekt jakościowy (rodzaj wprowadzanych do obiegu substancji), jak i ilościowy (poziom intensywności). Przykładowe kryteria szczegółowe to – w uprawie roślin – odpowiednio zaplanowany płodozmian o kilkuletniej rotacji (minimum cztery lata), z udziałem roślin bobowatych w plonie głównym, obejmujący wsiewki i międzyplony chroniące glebę przed erozją. Z kolei podstawą nawożenia jest próchnica uzyskiwana w procesie kompostowania materiałów organicznych pochodzenia roślinnego i zwierzęcego Zwierzęta spełniają w gospodarstwie ekologicznym istotną rolę: usprawniają i jednocześnie zamykają obieg materii. Obecność zwierząt wymusza włączenie do uprawy roślin pastewnych (poszerzenie bio-różnorodności), a przede wszystkim zapewnia gospodarstwu własne nawozy organiczne. Stosunkowo duża czystość gleb w Polsce jest
 dodatkową przesłanką do podejmowania tego typu działalności. Na uwagę zasługuje także znaczny potencjał wzrostu zapotrzebowania na produkty ekologiczne nie tylko w Polsce, ale także za granicą, a co za tym idzie – potencjał wzrostu eksportu tych produktów. [U]

8.5.2. Działanie C.5.2. Wdrażanie nowoczesnych metod upraw

Nowoczesne metody upraw proponują się wdrażać poprzez:

- **Wspieranie rozwoju rolnictwa na obszarach górskich i innych obszarach o niekorzystnych warunkach**, pod warunkiem spełnienia wymogów utrzymania zrównoważonego sposobu gospodarowania, uwzględniającego aspekty ochrony środowiska zgodnie z wymogami wzajemnej zgodności, w tym w szczególności dobrą kulturą rolną. Głowną korzyścią jest zapewnienie ciągłości rolniczego użytkowania ziemi i tym samym utrzymanie żywotności obszarów wiejskich, przyczyniające się pośrednio do przystosowania do zmian klimatu i ich ograniczania (m.in. dzięki zatrzymaniu prognozowanego odpływu wody z terenów górskich). Obszary górskie, obok wybrzeży i terenów zalewowych, uważane są za szczególnie narażone na występowanie negatywnych skutków zmian klimatu. [U]

- **Uprawę odmian roślin efektywniej wykorzystujących nawozy**. Efektywność wykorzystania azotu i fosforu w gospodarstwach produkujących np. mleko jest niewielka i w typowych gospodarstwach na Podlasiu wynosi odpowiednio ok. 19% i 27%. Teoretycznie możliwy jest 3-krotny wzrost efektywności wykorzystania azotu (a fosforu ponad 3,7-krotny) pod warunkiem poprawy efektywności przepływu składników nawozowych w produkcji rolnej między wszystkimi ogniwami łańcucha: gleba - ziemiopłody - pasza - zwierzę - gleba. Konieczne są działania wspierające (np. upowszechnianie) dla stosowania tego typu odmian przez producentów [U]

- **Upowszechnianie informacji o możliwości wprowadzenia bardziej efektywnych upraw, np. poprzez zastąpienie soi bardziej efektywnymi uprawami, m.in. wytwarzaną w kraju lucerną.** W niektórych regionach Europy 0,4 ha lucerny wystarcza do produkcji 1 tony białka, gdzie np. soja wymagałaby zajęcia 1,3 ha. Ponadto, lucerna jest rośliną miododajną, a jako roślina z rodziny bobowatych, pobierająca azot z atmosfery, nie wymaga stosowania nawozów mineralnych. Pozostając przez kilka lat na tym samym stanowisku przeciwdziała niszczeniu struktury gleby, a na terenach falistych zapobiega jej erozji. Wartość pokarmowa lucerny jest szczególnie duża. Nie wymaga przy tym znacznych inwestycji, oprócz działań wspierających i promocyjnych. [U]

- **Zastosowanie wysiewu wybranych gatunków roślin wieloletnich** (z rodziny bobowatych oraz traw) jako poplono w po zbiorach plono w glównych, co poprawia warunki glebowe, zatrzymuje niepożadaną emisję GHG oraz podwyższa zawartość oraz efektywność wykorzystania azotu. Równocześnie produkcja paszy z poplonów umożliwia zwiększenie udziału roślin towarowych w strukturze zasiewów, zwiększa wydajność produkcji zwierzęcej oraz umożliwia ciągły dopływ zielonej paszy bez konieczności jej konserwacji lub magazynowania. Wskazane jest uświadamianie wszystkich aspektów tej działalności, łącznie z elementami przeciwdziałania zmianom klimatu, ewentualnie także wsparcie finansowe zachęcające do podejmowania tej aktywności. [U]

Projekt z dnia 4 sierpnia 2015 roku
Wprowadzenie na masową skalę uprawy konopi przemysłowych. Mimo że jest to roślina odporna na suszę, 1 ha konopi wiąże aż ok. 2,5 t CO₂. Polska dysponuje odpowiednimi warunkami klimatyczno-glebowymi dla ich uprawy, a w Rejestrze Krajowym COBORU znajdują się odmiany o wysokiej wartości gospodarczej. Konopie wyróżniają się szybkim przyrostem biomasy (w ciągu 100 dni osiągają wysokość do 4 m) i nawet przy umiarkowanym nawożeniu dają wysoki plon biomasy (> 10 t/ha). Rozwinięty system korzeniowy zapewnia dobre przewietrzenie i zaopatrzenie w próchnicę, korzystnie wpływając na strukturę gleby i powoduje, że konopie są bardzo dobrym przedplonem dla dominujących w naszychплодodzinianach zbóż. Konopie nie wymagają w zasadzie stosowania środków ochrony roślin, z uwagi na wytwarzaną dużą biomasse, zagłuszając chwasty i wprowadzenie ich do zmianowania można traktować jako zabieg odchwaszczający. Ponadto, jeśli uprawiane na terenach skażonych, pobierają duże ilości metali ciężkich (kadm, ołów, miedź, rtęć) z gleby, przyczyniając się do ich rekultywacji (przywracając jej sprawność rolniczą). Surowiec konopny może być wykorzystany w przemyśle (m.in. celulozowym, materiałowych kompozytowych i izolacyjnych, spożywczym, kosmetycznym, do produkcji biopaliw).

Wprowadzanie, tam gdzie nie prowadzi to do wzrostu zużycia herbicydów i wypłukiwania składników odżywczych do głębszych warstw gleby, bezorkowego systemu uprawy roli. Tradycyjna uprawa pułzna roli, obok takich zalet jak redukcja zachwaszczenia, wzrost zawartości próchnicy dzięki przeoraniu reszek pożynnych i redukcja składników wypływających z wierzchnich warstw gleby, ma również wiele wad. Charakteryzuje się ona dużą energochłonnością, powodując nadmierne przesuszanie gleby oraz sprzyja erozji wodnej i wietrznej gleby. W uprawie bezorkowej pług zastępuje się zestawami maszyn i narzędzi, głównymi maszynami takimi jak glebogryzarki, motyki rotacyjne oraz głębsze - mogącymi spulchniać glebę z rozną intensywnością. Zastosowanie systemu uproszczonej uprawy wymaga dostosowania niektórych posiadanych maszyn oraz zakupu nowych, przynosi jednak oszczędności w zużyciu energii i wykorzystaniu sprzętu. Niższe zużycie paliwa również generuje mniejsze koszty oraz powoduje mniejsze zanieczyszczenie powietrza poprzez obniżenie emisji spalin, w tym dwutlenku węgla.

Upowszechnianie nawozowego wykorzystania odpadów organicznych i osadów ściekowych. Wprowadzanie osadu ściekowego i odpadu organicznego do gruntu o niewielkiej przydatności rolniczej, na których głównym problemem jest deficyt odpowiedniej ilości substancji organicznej, nadaje mu aktywność biologiczną właściwą glebie ukształtowanej naturalnie. W ten sam sposób można również przywrócić aktywność biologiczną glebom zdegradowanym.

Upowszechnianie efektywnego wykorzystania pasiek pszczelich do zapylania upraw rolniczych roślin owadopłynych. W warunkach polskich efektywne zapylanie przypada na miesiące od kwietnia do lipca, w zależności od gatunku rośliny uprawnej. Z arenału właściwie zapyłanego, w zależności od rodzaju uprawy, uzyskuje się o 30-80% większe plonowanie bez dodatkowego nawiżenia lub stosowania dodatkowych środków ochrony roślin. Właściwe zaplenie plantacji ma kluczowe znaczenie m.in. dla upraw rzepaku i produkcji sadowniczej. Niezależnie od wyników, zespół pszczoł posiadający pasieki wędrowne mogą świadczyć usługi zapyłania. Są również rolnicy posiadający wielohektarowe areały roślin uprawnych, którzy mogą być odbiorcami takiej usługi, głównie plantatorzy upraw rzepaku.
i sadownicy. Poprzez właściwe planowanie i koordynowanie wędrówek pasieki oraz stosowane zachęty do podejmowania gospodarki wędrownej (popularnej np. w USA), można w znacznym stopniu poprawić efektywność zapylania plantacji. [U]

- **Upowszechnianie zwiększania produktywności łąk poprzez złagodzenie niedoboru składników w wyniku nawożenia biogennymi lub przez bardziej odpowiednie wprowadzanie biogenów pozwalające osiągnąć optymalną produkcję łąk.** Zwiększenie produkcji łąkowej umożliwia wzrost poziomu pasz i w efekcie ogólną produkcję gospodarstwa rolnego. Takie podejście zwiększa ilość resztek poźniowych i w efekcie magazynowanie węgla w glebie. Dla urodnajnych gleb i/lub w regionach z odpowiednim poziomem nawodnienia w lecie inwestycja w nawożenie może podwoić zasoby i wzmocnić gospodarstwo rolne. [U]

- **Upowszechnianie precyzyjnego dawkowania nawozów mineralnych.** W przeważającej liczbie gospodarstw badających zasobność i realizujących plany nawozowe dawki nawozów są ustalane dla uśrednionych warunków panujących w obrębie pola. Duże zróżnicowanie zasobności w składniki mineralne na danym polu powoduje miejscowe przedawkowanie na glebie zasobnej lub za małe nawożenie na glebie ubogiej. Olbrzymi postęp technologiczny pozwala obecnie na bardziej racjonalne stosowanie nawożenia. Zastosowanie precyzyjnych systemów nawożenia, opierających się na wykorzystaniu komputerowych programów nawozowych czy urządzeń GPS w maszynach wysiewających nawozy pozwala z dużą dokładnością dostosować poziom nawożenia do konkretnego pola, co wynika z bieżącego badania gleby pod kątem jej zasobności w składniki pokarmowe. Konieczna jest promocja i edukacja wskazująca na korzyści wynikające z stosowania precyzyjnych systemów nawożenia w gospodarstwie. [U]

8.5.3. **Działanie C.5.3. Wdrażanie nowoczesnych metod chowu zwierząt**

Nowoczesne metody hodowli zwierząt proponuje się wdrażać poprzez:

- **Stosowanie prawidłowych, właściwie zbilansowanych dawek pokarmowych dla zwierząt.** Ocenia się, że w Polsce ponad 600 tys. gospodarstw rolnych produkuje pasze na własne potrzeby, ale skład tych pasz nie uwzględnia właściwych proporcji żywieniowych, co z kolei przekłada się na niefektywne godziny paszy w kontekście produkcji mięsa, mleka i jaj. Działania w zakresie edukacji oraz przygotowywanie receptur pasz prowadzone są na różnych poziomach przez rozproszony przemysł paszowy. Są duże trudności z indywidualnym dotarcie do poszczególnych rolników. Inwestycja polegająca na zakupie programów komputerowych w połączeniu z edukacją i przeszkołeniem w zakresie przygotowywania receptur pasz pozwoli rolnikom na właściwe skomponowanie mieszanki paszowej i jednocześnie efektywne gospodarowanie surowcami i materiałami paszowymi. [U]

- **Zmniejszenie uciążliwości ferm drobiarskich** (wskutek zanieczyszczania środowiska gazami i pyłami) dzięki upowszechnieniu probiotycznych preparatów do produkcji drobiarskiej (działających na zasadzie wypierania szkodliwych drobnoustrojów jako dodatków do pasz lub w procesie dezynfekcji wnętrza budynku). Ocenia się, że poprawi to zdrowotność ptaków, polepszy wykorzystanie paszy o około 7-10 %, co w przypadku kosztów paszy stanowiących blisko 60-75% nakładów na utrzymanie drobia, poprawi wyniki produkcyjne w odniesieniu do jaj i mięsa drobiowego. Dla konsumentów oznacza to większe
bezpieczeństwo mikrobiologiczne produktów, a dla środowiska eliminację zagrożeń wynikających ze stosowania agresywnych preparatów chemicznych (leki, dezynfekcje). [U, F]

- **Poprawę cech genetycznych zwierząt**, co powinno umożliwić wzrost produkcji mleka poprzez wykorzystanie w praktyce informacji na temat wartości użytkowej i hodowlanej zwierząt przeznaczonych na rodziców nastepnego pokolenia i właściwy dobór do kojarzeń krów i jalogów ze względu na najwyższą wartości hodowlanej. Selekcja zwiększy zarówno produkcyjnosc, jak i pomoże zredukować emisje. W wielu przypadkach może to osiągnąć w prosty sposób poprzez selekcję cech produkcyjnych oraz cech związanych z efektywnością całego systemu produkcji (np. cech płodności i długowieczności). Prowadzenie skutecznej selekcji wymaga posiadania wiarygodnych informacji na temat wartości hodowlanej zwierząt przeznaczonych do hodowli.

Poprawa jakości genetycznej zwierząt gospodarskich jest możliwa między innymi poprzez:

- zapewnienie prowadzenia oceny wartości hodowlanej i użytkowej zwierząt gospodarskich oraz powszechnego dostępu i korzystania z wyników tej oceny, z uwzględnieniem racjonalnego sposobu korzystania ze środowiska, przy zachowaniu bogatej bioróżnorodności zwierząt gospodarskich,

- zapewnienie ciągłości prowadzenia ksiąg hodowlanych zwierząt gospodarskich oraz oceny wartości użytkowej i hodowlanej tych zwierząt, udostępnianie wyników tych ocen wszystkim hodowcom, którzy na ich podstawie mogą podejmować właściwe decyzje o wyborze konkretnych zwierząt na rodziców nastepnego pokolenia. [U T L]

9. **Cel szczegółowy D: Transformacja niskoemisyjna w dystrybucji i mobilności**

Zgodnie z danymi za 2010 r. emisje związane z działalnością transportową stanowią niespełna 12% wszystkich emisji gazów cieplarnianych generowanych przez polską gospodarkę. Ich dominującym źródłem jest spalanie paliw w transporcie drogowym (97% emisji GHG w porównaniu do 94% w całej UE). Najważniejszym czynnikiem wpływającym na poziom emisji jest struktura transportu, stan infrastruktury, wiek pojazdów oraz intensywność ich wykorzystania. Podobnie jak w przypadku energetyki śląd węglowy generowany w trakcie przemieszczania osób, produktów i materiałów ma pośredni wpływ na emisyjność wszystkich transportowanych dóbr. Zgodnie z analizami oraz wykorzystywanymi modelami, potencjał redukcji emisji wynikających z transportu w perspektywie do 2050 r. przy poniesieniu możliwych do akceptacji kosztów nie przekracza 11% (w porównaniu do poziomu emisji z 2005 r.). Możliwe są to działania zmierzające do znacznej redukcji emisyjności w przeliczeniu na odpowiednie jednostki, np. tonokilometr lub osobokilometr.

Dystrybucja rozumiana jako proces magazynowania oraz przemieszczania produktów pomiędzy producentem a konsumentem jest bezpośrednio związana z transportem, ale nie ogranicza się tylko do funkcji transportowych i w rozumieniu Programu obejmuje również działalność związaną z handlem. Zgodnie z danymi poziomem emisyjności związanej z dystrybucją (w tym handlem) w Polsce nie odbiega znacząco od średniej europejskiej i działania podejmowane w tym zakresie będą wypadkową procesów zachodzących również w innych gałęziach gospodarki.
Analizy wskazują, że transformacja gospodarcza doprowadziła do uruchomienia procesów, które są niekorzystne z punktu widzenia budowy gospodarki niskoemisyjnej. Szczególnie niepokojący jest spadek udziału środków transportu charakteryzujących się najniższą jednostkową emisyjnością. W latach 2000-2010 udział transportu kolejowego w przewozach osób spadł z 12% do 5%, natomiast udział w przewozach towarów z 15% do 6%. Dodatkowo obserwuje się spadek udziału transportu publicznego – ponownie z 15% w 2000 r. do 6% w 2010 r. Niekorzystnie na emisyjność transportu wpływa niski udział żeglugi śródlądowej, która nie ma praktycznie żadnego znaczenia dla systemu transportowego Polski biorąc pod uwagę jej udział w przewozach ogółem. Istotnym wyzwaniem jest ponadto niski poziom transportu intermodalnego, który najczęściej jest najbardziej optymalną formą przemieszczania ładunków wykorzystującą różne rodzaje transportu.

Kolejnym elementem pogarszającym sytuację w tym zakresie jest stan polskiej floty samochodowej, która ze względu na wiek charakteryzuje się wysokim poziomem spalania paliw, co w konsekwencji prowadzi do wysokiej emisyjności. Zgodnie z danymi aż ¾ pojazdów zarejestrowanych w Polsce jest starsza niż 10 lat i większość z nich charakteryzuje się wyższym spalaniem w porównaniu do średniej europejskiej.

Emisyjność polskiego transportu zwiększa niedostateczny rozwój infrastruktury, w szczególności kolejowej. Przebudowa infrastruktury drogowej w pierwszej kolejności względem infrastruktury kolejowej prowadzi do zwiększenia atrakcyjności transportu drogowego i zwiększa poziom emisyjności gospodarki. Obecny stan infrastruktury ma wpływ na efektywność dystrybucji. Pogarszająca się jakość połączeń kolejowych oraz polepszający się stan infrastruktury drogowej wpływa na ilość i formę zużywanego paliwa, co w konsekwencji prowadzi do zwiększenia ładu węglowego produktów w całym cyklu ich życia.

Wraz ze wzrostem zamożności zmienia się ponadto intensywność wykorzystania środków transportu (w szczególności w zakresie indywidualnego transportu drogowego). Dane wskazują, że zużycie paliwa w Polsce w przeliczeniu na mieszkańca jest w Polsce dwukrotnie niższe niż w najbardziej rozwiniętych krajach Europy Zachodniej. Taki stan rzeczy jest konsekwencją niższej siły nabyciowej polskich konsumentów i wraz z dalszym rozwijem gospodarczym będzie zanikać. Ze względu na wzrost zamożności oczekuje się również wzrostu przewozu towarów, co będzie mieć istotny wpływ na zwiększenie udziału dystrybucji (łącznie z handlem) w strukturze emisji gospodarki.

Obszary zidentyfikowane na potrzebę NPRGN w dziedzinie transportu stanowiły najliczniejszą grupę obszarów (21%). Najwięksą grupę stanowią obszary działań związanych z inwestycjami kapitałowymi, działalnością badawczo-rozwojową, dzieleniem się wiedzą, edukacją oraz szkoleniami.

Celem NPRGN w zakresie transformacji niskoemisyjnej w dystrybucji i mobilności jest nieznaczne łączne zmniejszenie emisyjności polskiej gospodarki w sektorze transportu, mimo znacznego wzrostu popytu na usługi transportowe w perspektywie 2050 roku. W związku z tym, że 97% emisji w tym sektorze związane jest ze spalaniem paliw, priorytetem jest znalezienie rozwiązań systemowych, które będą prowadzić do optymalizacji wykorzystania paliw w sektorze.

Transformacja niskoemisyjna będzie obejmować:
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

- rozwój infrastruktury wspierającej optymalne z punktu widzenia emisyjności rodzaje transportu;
- zmianę pojazdów na mniej emisyjne w tym pojazdy na paliwa alternatywne i elektryczne;
- wspieranie rozwoju transportu publicznego;
- zastąpienie paliw wysokoemisyjnych przez mniej emisyjne.

Rozwój infrastruktury (szczególnie kolejowej) powinien przyczynić się do zwiększenia atrakcyjności tego środka transportu zarówno w przewozie osób, jak również towarów. Poprawa ogólnego stanu infrastruktury doprowadzi do zmniejszenia ilości spalanego paliwa w przeliczeniu na tonokilometr oraz osobokilometr, a w konsekwencji do bardziej optymalnego wykorzystania zasobów. Zmiana pojazdów na nowoczesniejsze zmniejszy czas przejazdów oraz emisyjność mobilności i dystrybucji. Zmiany wzorców przemieszczania się doprowadzą do popularyzacji transportu publicznego, który dzięki efektywności skali będzie funkcjonować w sprawny sposób z uwzględnieniem zarówno czynników ekonomicznych, jak również wysokiej satysfakcji klientów.

Dodatkowo emisyjność pojazdów może zmniejszyć się poprzez zmianę paliw. Transformacja niskoemisyjna w dystrybucji i mobilności może ponadto zostać spowodowana zastąpieniem niektórych dóbr wykorzystywanych obecnie w sposób materialny przez ich zamienniki dostępne w formie elektronicznej oraz on-line.

Teoretyczny potencjał redukcji emisji gazów cieplarnianych w obszarze transportu (biorąc pod uwagę wyłącznie działania na rzecz poprawy infrastruktury) wynosi w 2050 roku:
- +53% (wzrost) względem roku 1990
- 11% względem roku 2005.

Koszt inwestycji w zakresie poprawy infrastruktury transportu są bardzo wysokie. Przykładowo, tylko wydatki na modernizację floty samochodowej w latach 2010-2050 konieczne do osiągnięcia redukcji emisyjności transportu w 2050 roku względem 2005 roku szacuje się na około 1 279 mld zł.46

Dzięki działaniom zidentyfikowanym w NPRGN możliwe jest obniżenie emisyjności sektora transportu w 2050 o 17 mln ton ekwiwalentu dwutlenku węgla w porównaniu do scenariusza bez podjęcia interwencji (wielkość ta stanowi około 35% emisji generowanych przez transport w 2010 roku).

46 Materiały analityczne wykonane na potrzeby NPRGN przez WISE oraz PwC.
9.1. **Priorytet D.1 Zwiększenie efektywności wybranych elementów łańcucha logistycznego**

Wraz z rozwojem mobilności oraz wzrostem gospodarczym istotnie rośnie popyt na usługi transportowe towarów. Zwiększenie wolumenu przemieszczanych dóbr przy jednoczesnej specjalizacji gospodarki prowadzi do rozbudowania istniejących łańcuchów dostaw. Rozwój efektywnych, niskoemisyjnych łańcuchów logistycznych należy przede wszystkim do przedsiębiorstw, niemniej jednak stworzenie odpowiednich warunków ramowych może przyczynić się do rozwoju tego sektora w oczekiwany kierunku – tzn. z uwzględnieniem konieczności przeprowadzenia transformacji niskoemisyjnej. W ramach proponowanej interwencji publicznej proponuje się podjąć działania związane z planowaniem oraz zarządzaniem transportem towarowym, dzięki czemu możliwe będzie zmniejszenie zużycia energii. Należy przy tym przypomnieć, że dotychczasowe działania podejmowane na rzecz unowocześnienia dystrybucji oraz logistyki doprowadziły do znacznego podniesienia efektywności wykorzystania zasobów i kolejne przedsięwzięcia mają na celu kontynuowanie tego trendu w przyszłości.

Ze względu na złożoność oraz różnorodność elementów łańcucha logistycznego w zależności od specyfiki danej branży, przedstawione propozycje obejmować będą przede wszystkim rozwiązania horyzontalne, które można zastosować na szeroką skalę dzięki stworzeniu warunków do upowszechnienia najbardziej obiecujących rozwiązań w zakresie podnoszenia efektywności (zmniejszenia emisyjności) poszczególnych elementów łańcucha logistycznego.

9.1.1. **Działanie D.1.1. Wprowadzenie regulacji prawno-finansowych wpływających na integrację poszczególnych gałęzi transportu towarowego**

W ramach niniejszego działania proponuje się:

- **Dokonanie analizy istniejących rozwiązań i regulacji prawno-finansowych dotyczących przewozów towarowych**, biorąc pod uwagę możliwość wprowadzenia rozwiązań umożliwiających jednolite mierzenie wydajności poszczególnych elementów łańcucha logistycznego jak i jego całości (również w celach porównawczych), biorąc pod uwagę poziom jego emisyjności. Stworzenie odpowiedniej, ogólnie akceptowanej metodyki w tym zakresie będzie pomocne na etapie opracowania regulacji sprzyjających rozwojowi logistyki z uwzględnieniem zasad zrównoważonego rozwoju. Aspekt ten sprzyjać będzie np. promocji bliższej lokalizacji poszczególnych ogniw procesu technologicznego oraz zmniejszeniu transportochłonności gospodarki. [UL]

- **Przyspieszenie rozwoju systemów elektronicznego śledzenia transportu towarowego, tzn. elektronicznego obiegu informacji**, który pozwala na śledzenie fizycznego przepływu towarów za pomocą systemów teleinformatycznych. W ramach działania proponuje się wspierać przedsięwzięcia polegające na tworzeniu/unowocześnianiu narzędzi zintegrowanego zarządzania transportem towarowym w łańcuchu dostaw, ogólnopolskich platform monitorowania ruchu logistycznego w Polsce. Działanie takie pozwoli bardziej dokładnie ocenić emisyjność usług transportowych oraz zaproponować efektywne kosztowo rozwiązania przyczyniające się do osiągania jednoczesnych korzyści ekonomicznych i środowiskowych. [UF]
Popieranie rozwoju zarządzania transportem towarów w miastach (logistyka miejska).
W Polsce obszar transportu towarowego na terenach zurbanizowanych oprócz nielicznych regulacji, np. dot. dostępu pojazdów ciężkich do obszarów miejskich, nie jest uporządkowany. Wobec tego postuluje się racjonalizację systemu dystrybucji towarów na obszarach miejskich poprzez wprowadzenie regulacji prawno-finansowych wpływających na integrację poszczególnych gałęzi transportu. W dokumentach rządowych i JST dotyczących polityki transportowej formułowane są zadania dot. systemów transportu ładunków. Mają one przyczynić się do zmniejszenia załoczenia dróg i innych uciążliwości dla mieszkańców poprzez ograniczenie i lepsze skoordynowanie ruchu pojazdów ciężarowych. Brak jest jednak szczegółowych wytycznych dot. wdrażania dobrych praktyk, czy przełożenia rozwiązań zagranicznych na polskie realia. Działania uznawane w zakresie logistiki miejskiej w większości dotyczyć będą kwestii regulacyjnych, ale również inwestycyjnych obejmujących rozwój np. sieci punktów dystrybucyjnych. [U F L]

Zwiększenie poziomu świadomości i zainteresowania uczestników łańcucha dostaw kwestiami związanymi z odpowiedzialnością w łańcuchu dostaw. Działania w tym zakresie powinny polegać na wspieraniu organizacji biznesowych (izb, stowarzyszeń) w zakresie tworzenia i wdrażania dobrowolnych zasad dobrego postępowania oraz wyszukiwania możliwych pól współpracy pomiędzy poszczególnymi przedsiębiorcami. [U]

9.1.2. Działanie D.1.2. Rozwój transportu intermodalnego

Budowę nowoczesnych terminali intermodalnych w Polsce, dzięki czemu nastąpi przejmowanie części ładunków przez transport kolejowy oraz optymalizacja przemieszczania ładunków na średnie i długie dystanse, co przyczyni się do ograniczenia ilości emisji, odciążenia infrastruktury drogowej i ograniczenia kosztów zewnętrznych transportu. Budowa nowoczesnych terminali wpłynie na zwiększenie wykorzystania kolei w przewozach ładunków. Dodatkowa infrastruktura łącząca transport morski i lądowy na zaplecze portowe morskie przyspieszy ich rozwój i przyczyni się do rozwoju obszarów północnej Polski. Zgodnie z obecnymi analizami sieć terminali intermodalnych nie jest wystarczająca. Objęcie transportem intermodalnym całego terytorium Polski wymagałoby uruchomienia, kilkudziestu terminali oraz kilkunastu regionalnych centrów logistycznych. W dokumentach strategicznych dot. transportu zakłada się wzrost udziału transportu intermodalnego w przewozach z obecnym 2% do 5-6% w perspektywie do 2020 r. Należy jednak oczekiwać, że udział transportu intermodalnego w przewozach w perspektywie do 2050 r. powinien być o wiele wyższy. Szczegółowy kierunek rozwoju powinien być uzależniony od wyników dodatkowych analiz na bieżąco monitorujących rozwój transportu towarowego w Polsce. [F]
• **Opracowanie platformy wymiany najlepszych praktyk w zakresie rozwoju transportu intermodalnego.** Budowa efektywnego systemu transportowego wymaga udziału wielu interesariuszy, skoordynowania ich działań oraz dopasowania do wzajemnych potrzeb i możliwości. Rozwój transportu intermodalnego może być intensyfikowany dzięki nawiązaniu zinstytucjonalizowanej kooperacji pomiędzy najważniejszymi aktorami wykorzystującymi transport intermodalny. Pożądannymi narzędziami w tym zakresie jest dalszy rozwój platform teleinformatycznych pozwalających na optymalne wykorzystanie infrastruktury, budowę portalu umożliwiających wymianę najlepszych praktyk oraz form współpracy zainteresowanych przedsiębiorstw. Istotnym elementem jest również wspieranie współpracy pomiędzy sektorem publicznym (np. samorządami terytorialnymi) oraz biznesem.

9.2. **Priorytet D.2 Transformacja niskoemisyjna w sektorze handlu**

Sektor handlu, ze względu na zajmowaną pozycję w łańcuchu wartości, pełni szczególną rolę w ramach transformacji niskoemisyjnej - zgodnie z danymi odpowiada za zatrudnienie około ¼ pracowników oraz przyczynia się do utworzenia niemal 1/3 PKB. Wobec tego podjęcie działań w tym sektorze, choćby poprzez prowadzenie systematycznych szkoleń wśród pracowników oraz akcji informacyjnych wśród konsumentów, potencjalnie wielokrotnie wzmacnia skuteczność działań podejmowanych w zakresie popularyzacji zrównoważonej konsumpcji na etapie edukacji formalnej.

Niemniej jednak ze względu na wysoki poziom konkurencji na rynku oraz istotną wrażliwość polskiego konsumenta na cenę produktu działania związane z promocją transformacji niskoemisyjnej w sektorze handlu muszą mieć możliwie neutralny wpływ na poziom cen dóbr oferowanych na rynku. Konieczne jest też zidentyfikowanie obszarów, w których poszczególni gracze na rynku będą mogli nawiązać współpracę pomimo wysokiego poziomu konkurencji na rynku. W związku z tym wśród działań, które mogą przyczynić się do zmniejszenia emisyjności gospodarki zaliczono przede wszystkim te, których efektem będzie rozwój rynku produktów lokalnych oraz regionalnych, stworzenie warunków sprzyjających podejmowaniu przez sektor handlu inicjatyw na rzecz promocji produktów charakteryzujących się niskim poziomem emisyjności oraz wspieranie dobrowolnych inicjatyw na rzecz promocji zrównoważonych zachowań konsumenckich.

9.2.1. **Działanie D.2.1. Rozwój krótkich łańcuchów dostaw oraz rynków lokalnych**

Jednym z działań zmierzających do zmniejszenia transportochłonności gospodarki jest promowanie rozwoju krótkich łańcuchów dostaw wykorzystujących lokalne produkty, dzięki czemu możliwe jest ograniczenie emisji związanych z przemieszczaniem produktów na duże odległości. Urzeczywistnienie takiego scenariusza napotyka jednak na wiele wyzwań, do których należą: istotny poziom rozdrobnienia oraz brak organizacji i współpracy małych producentów, wysokie koszty wejścia na rynek oraz promocji oferowanych produktów, a także liczne ograniczenia natury administracyjnej. Konsumpcja lokalnych wyrobów jest obecnie typowa dla mniejszych miejscowości. W dużych miastach system bezpośrednich relacji producent-konsument został zastąpiony rozbudowaną siecią sprzedaży. Oba wymienione wyżej modele sprzedaży
Przeprowadzenie okresowych przeglądów obowiązujących aktów prawnych pod względem możliwości uproszczenia zasad oraz wymogów związkanych z wprowadzaniem na rynek produktów lokalnych oraz regionalnych. Celem działania w tym zakresie jest zidentyfikowanie potencjalnych szans związanych z możliwością rozwoju rynku produktów lokalnych dzięki ocenie zasadności oraz ewentualnego zmniejszenia reżimu związanego ze spełnieniem specyficznych wymogów koniecznych do wprowadzenia produktów regionalnych na rynek w przypadku produkcji małoskalowej. W przypadku możliwości wprowadzenia ułatwień - włączenie ich do systemu prawnego. [L]

Rozwijanie platformy współpracy lokalnych producentów oraz sprzedawców w celu tworzenia bardziej efektywnych kanałów sprzedaży produktów lokalnych i regionalnych. Wprowadzenie produktu regionalnego wytwarzanego w małej skali na rynek często przekracza możliwości pojedynczych producentów. W związku z tym proponuje się wdrożyć działania sprzyjające łączeniu się drobnych producentów w większe grupy. Do proponowanych działań zaliczyć można organizowanie pomocy prawnej, prowadzenie szkoleń w zakresie budowy kanałów sprzedaży, pomoc w zakresie promowania produktów lokalnych. [U F]

Dokonanie rewitalizacji lokalnych/tradycyjnych miejsc sprzedaży produktów regionalnych poprzez dokonanie przebudowy lokalnej infrastructury handlowej (np. placów i targowisk). Proces ten powinien być powiązany z ogólnymi strategiami oraz programami mającymi na celu rewitalizację obszarów urbanizowanych (ze szczególnym uwzględnieniem centrów małych peryferyjnych miast) oraz obszarów wiejskich. [F]

9.2.2. Działanie D.2.2. Tworzenie warunków sprzyjających promocji produktów ekologicznych

Podejmowane na różnych szczeblach działania związane z popularyzacją produktów ekologicznych nie przynoszą wystarczających efektów. Jednym z powodów takiego stanu rzeczy jest brak zaufania konsumentów do zamieszczanych na produktach informacji środowiskowych oraz brak wiedzy na temat rzeczywistej wartości stosowanych oznaczeń. Działania mające na celu uporządkowanie tej sytuacji będą efektywne w przypadku podjęcia skoordynowanych działań regulatorów, producentów oraz sprzedawców. W ramach niniejszego działania proponuje się:

Stworzenie powszechnej dostępnej bazy danych o zasięgu ogólnopolskim zawierającej informacje na temat istoty stosowanych przez producentów oznaczeń środowiskowych, dzięki którym możliwe będzie zweryfikowanie tzw. twierdzeń środowiskowych (informacji o cechach środowiskowych) oraz porównanie poszczególnych produktów w zależności od przyjętych kryteriów. Opracowanie ww. bazy poprawi dostęp do informacji pozwalających na dokonanie wyborów konsumenckich z uwzględnieniem czynnika środowiskowego oraz ilości emisji generowanych przez dany produkt w całym cyklu życia. Natomiast sektor handlu będzie mógł lepiej ocenić portfolio oferowanych przez siebie produktów z uwzględnieniem ich
charakterystyki środowiskowej oraz podejmować decyzje dotyczące ewentualnego wspierania produktów niskoemisyjnych. [UL]

- **Prowadzenie akcji informacyjnych oraz upowszechnianie zasad informowania konsumentów o cechach środowiskowych produktów.** Przeciętny konsument nie rozumie lub nie zwraca uwagi na oznaczenia środowiskowe stosowane na produktach. W związku z tym postuluje się opracowanie ustandaryzowanego systemu informowania konsumentów o cechach środowiskowych produktów (np. emisji gazów cieplarnianych, wykorzystania wody oraz energii koniecznej do wytworzenia danego towaru). Proponuje się opracować i upowszechnić jednolity sposób znakowania produktów. Działania w tym zakresie powinny być kompatybilne z inicjatywami prowadzonymi w zakresie prac normalizacyjnych na poziomie międzynarodowym. Dzięki zamieszczeniu prostej informacji konsument powinien móc w łatwy sposób porównać poszczególne produkty dostępne na rynku biorąc pod uwagę wpływ ich produkcji i konsumpcji na środowisko, poziom emisji gazów cieplarnianych i ewentualnie uwzględnić te informacje w trakcie dokonywania zakupów. Dodatkowo, stworzenie jednolitego systemu oceny produktów pomoże ustalić realne efekty ekologiczne działań podejmowanych przez przedsiębiorstwa w zakresie zwiększania efektywności wykorzystywania zasobów oraz dopasować stosowane instrumenty pomocowe do najlepszych rozwiązań. W konsekwencji działania prowadzone w tym obszarze przyczynią się do budowy rynku produktów ekologicznych (w tym niskoemisyjnych) w Polsce. [UL]

9.3. Priorytet D.3 Modernizacja pojazdów oraz infrastruktury w celu upowszechnienia niskoemisyjnych form transportu

Zgodnie z danymi, w strukturze pracy przewozowej w Polsce dominuje transport drogowy, który jest najmniej efektywny energetycznie i emituje najwięcej gazów cieplarnianych. Przykładowo, zużycie oleju napędowego na każde 100 tonokilometrów w przypadku transportu drogowego jest około 2,5-krotnie wyższe niż w przypadku użycia transportu szynowego i ponad 3-krotnie wyższe w porównaniu do wykorzystania statku śródlądowego.

Dodatkowo transport samochodowy odpowiada za wykonanie ponad 4/5 pracy przewozowej w przypadku przemieszczania towarów oraz pracy przewozowej w odniesieniu do dalekobieżnych przejazdów osób. Mimo tak dużej dominacji transportu drogowego w obecnej strukturze transportowej Polski, zarówno w przewozie pasażerów, jak również towarów – ocenia się, że jego udział będzie rósł w perspektywie najbliższych 10-15 lat, co potencjalnie może negatywnie wpłynąć na realizację celu Programu.

Ocenia się, że podjęcie działań w zakresie zmniejszenia poziomu emisji w sektorze transportu będzie jednym z najważniejszych wyzwań dla gospodarki w perspektywie kolejnych kilku dziesięcioleci ze względu na gwałtowny wzrost popytu na usługi transportowe. Wobec tego w ramach niniejszego priorytetu proponowane są rozwiązania, dzięki którym można doprowadzić przynajmniej do zahamowania wzrostu emisyjności transportu po akceptowalnych cenach oraz jednoczesnym, pozytywnym wpływem na gospodarkę. Do najważniejszych z nich należy modernizacja infrastruktury transportowej oraz środków transportu. Proponuje się, aby działania podejmowane w tym kierunku prowadziły do zwiększenia popytu na formy transportu, które będą przyczyniać się do bardziej oszczędnego zużycia paliw w sektorze oraz zwiększania podaży na
niskoemisyjne pojazdy. Pozwoli to na zmniejszenie emisyjności gospodarki mimo zwiększania potrzeb transportowych społeczeństwa.

W związku z tym w ramach niniejszego priorytetu prezentowane są działania, które:

- dzięki modernizacji infrastruktury oraz środków transportu przyczynią się do zmniejszenia emisyjności transportu drogowego;
- dzięki inwestycjom w infrastrukturę oraz środki transportu spowodują przesunięcie części popytu z transportu drogowego na transport niskoemisyjny (w tym kolejowy), a więc przyczynią się do zmniejszenia zużycia energii przez gospodarkę;
- doprowadzą do zmniejszenia emisyjności pozostałych (innych niż drogowy) środków transportu.

9.3.1. Działanie D.3.1. Modernizacja i rozwój niskoemisyjnej infrastruktury transportowej

Rozwój drogowego transportu niskoemisyjnego będzie możliwy m.in. dzięki podjęciu następujących przedsięwzięć:

- **Promocja rozwiązań technicznych przyczyniających się do zwiększania efektywności energetycznej transportu drogowego.** W ramach działania proponuje się upowszechniać informacje na temat niskoemisyjnych technologii budowy nawierzchni drogowych (asfaltowych, betonowych, modyfikowanych); energooszczędnych metod zastosowania innowacyjnych mieszanek mineralno-asfaltowych oraz technologii budowy nawierzchni zmniejszających zapotrzebowanie na energię. Dodatkowo proponuje się upowszechniać stosowanie naturalnych pochłaniaczy zanieczyszczeń występujących w pasie drogowym (np. drzew i krzewów oraz wybranych gatunków traw).

- **Upowszechnienie stosowania materiałów do budowy infrastruktury drogowej, które mogą zostać ponownie wykorzystane.** Proponuje się realizować przedsięwzięcia mające na celu popularyzację stosowania materiałów możliwych do wielokrotnego wykorzystania zarówno w ramach infrastruktury transportowej, jak również w innych gałęziach gospodarki (ze szczególnym uwzględnieniem materiałów pochodzących z odzysku i recyklingu). Wobec tego proponowane jest określenie zasad projektowania, użytkowania oraz demontażu materiałów wykorzystywanych w infrastrukturze drogowej, dzięki czemu możliwe będzie określenie przydatności, bezpieczeństwa oraz opłacalności wielokrotnego wykorzystania materiałów.

- **Rozwój infrastruktury dla paliw alternatywnych koniecznej do upowszechnienia innowacyjnych aut, w tym pojazdów hybrydowych, elektrycznych, wykorzystujących gaz ziemny oraz inne paliwa alternatywne.** Zbudowanie odpowiedniej infrastruktury jest niezbędne do popularyzacji pojazdów korzystających z energii elektrycznej oraz innych paliw alternatywnych. Dyrektywa Parlamentu Europejskiego i Rady 2014/94/UE w sprawie rozwoju infrastruktury paliw alternatywnych nakłada na państwa członkowskie obowiązek rozmieszczenia infrastruktury dla ładowania energii elektrycznej oraz stacji tankowania gazu ziemnego w postaci CNG i LNG. W zakresie innych paliw alternatywnych (wodór, biopaliwa,
NARODOWY PROGRAM ROZWOJU GOSPODARKI NISKOEMISYJNEJ

- **Likwidacja bramek na autostradach.** Większość kierowców aut osobowych dokonuje płatności za użytkowanie autostrady bezpośrednio przy bramkach. Pobór opłat za pomocą bramek jest jednym z najdroższych sposobów dokonywania płatności, dodatkowo, w pewnych okresach, przy wzmożonym natężeniu ruchu, prowadzi to do tworzenia zatorów. Taki stan rzeczy skutkuje istotnym wydłużeniem czasu koniecznego na pokonanie konkretnego dystansu oraz emisją dodatkowych zanieczyszczeń. Wobec tego proponuje się możliwości wprowadzenia elektronicznego systemu poboru opłat dla aut osobowych będącego alternatywą dla opłat na bramkach lub wprowadzenie systemu winiet dla pojazdów osobowych. [U F L]

W celu rozwoju pozostałych form transportu niskoemisyjnego proponuje się:

- **Budowę zintegrowanych węzłów transportowych** łączących różne środki transportu na obszarach zurbanizowanych oraz trasowych w taki sposób, aby możliwy był optymalny, również z punktu widzenia emisyjności, wybór środka transportu oraz wysoki poziom komplementarności poszczególnych rodzajów transportu zarówno w skali lokalnej, jak również regionalnej, krajowej i międzynarodowej. [F]

- **Poprawę stanu i modernizacji infrastruktury kolejowej**, dzięki której możliwe będzie zwiększenie poziomu bezpieczeństwa oferowanych usług oraz wprowadzenie wyższych prędkości rozkładowych. Ulepszanie stanu infrastruktury jest jednym z najważniejszych czynników warunkujących poprawę atrakcyjności kolei jako środka transportu osób i towarów. Efektem dokonania koniecznych inwestycji będzie zmniejszenie czasu przejazdów, zwiększenie punktualności przewozów i komfortu podróży, a w konsekwencji zwiększenie udziału kolei w transporcie. Efektem działań będzie również wsparcie rozwoju przemysłu kolejowego. [U F L]

- **Budowę infrastruktury dla niezmotoryzowanych form transportu oraz podniesienia atrakcyjności transportu publicznego.** Przeniesienie części indywidualnego transportu drogowego na rzecz alternatywnych form przemieszczania na obszarach zurbanizowanych stanowi istotny czynnik przyczyniający się do zmniejszenia emisyjności w transporcie. Osiągnięcie pozytywnych zmian w tym zakresie będzie możliwe dzięki wspieraniu inwestycji infrastrukturalnych mających na celu zwiększenie atrakcyjności transportu publicznego i rowerowego względem indywidualnego transportu drogowego (w szczególności na małych dystansach w centrum miast). W celu osiągnięcia oczekiwanej jakości stanu proponuje się dokonać koniecznych inwestycji związanych z rozbudową i modernizacją dróg rowerowych. Natomiast podniesienie atrakcyjności transportu publicznego będzie możliwe m.in. dzięki budowie lub modernizacji parkingów typu P+R na obrzeżach miast, jak również modernizacji i rozbudowie infrastruktury szynowej w miastach (np. tramwaje). Dzięki tym inwestycjom możliwe będzie zwiększenie przepustowości alternatywnych wobec indywidualnego transportu drogowego form transportu w mieście oraz zmniejszenie natężenia ruchu samochodowego w centrum dużych miast, a co za tym idzie zmniejszenie emisji. [U F L]
9.3.2. Działanie D.3.2. Modernizacja i rozwój niskoemisyjnych środków transportu

Program wskazuje na możliwość rozwoju niskoemisyjnych środków transportu drogowego dzięki:

- Wykorzystaniu paliw alternatywnych (w szczególności gaz ziemny i energia elektryczna) w publicznym trasporcie drogowym. Proponuje się realizowanie przedsięwzięć mających na celu popularyzację transportu zbiorowego opartego o paliwa alternatywne w obszarach miejskich, szczególnie w obszarach gęstej zabudowy oraz o przekroczonych normach jakości powietrza. Wspierane powinny być projekty, dzięki którym możliwe będzie włączenie do istniejącej floty nowych pojazdów o napędzie elektrycznym i napędzie CNG lub LNG w wybranych aglomeracjach o największym poziomie natężenia ruchu oraz zanieczyszczenia powietrza. Dodatkowo proponowane jest opracowanie zasad oceny adekwatności wymiany floty w warunkach konkretnego miasta, biorąc pod uwagę zarówno kwestie środowiskowe, jak również ekonomiczne (z uwzględnieniem kosztów zewnętrznych).

- Zwiększeniu udziału samochodów o wysokich normach emisji spalin, samochodów hybrydowych, elektrycznych, napędzanych gazem ziemnym (w postaci CNG lub LNG) oraz wykorzystujących inne paliwa alternatywne w polskiej flote samochodowej. Wprowadzenie pojazdów ekologicznych przyczyni się do zmniejszenia zużycia paliwa i emisji szkodliwych spalin oraz hałasu. Niemniej jednak główną barierą popularyzacji tego typu pojazdów jest wysoka cena ich zakupu oraz eksploatacji w przypadku wymiany niektórych elementów pojazdu – np. baterii w samochodach elektrycznych. W związku z tym proponuje się wdrożyć zachęty polegające na wprowadzeniu preferencyjnych cen za korzystanie z dróg publicznych (np. autostrad) oraz miejsc parkingowych, umożliwiających wjazd do miejsc ograniczonego ruchu oraz wprowadzaniu dedykowanych pasów ruchu dla aut charakteryzujących się niskim poziomem emisji. Wielkość i rodzaj zachęt powinien być uzależniony od stopnia redukcji emisji związanych z użytkowaniem danego środka transportu.

- Wprowadzeniu instrumentów promujących pojazdy niskoemisyjne i bezemisyjne poprzez zmianę aktualnie obowiązującego w Polsce systemu podatkowego, w tym m.in. wprowadzeniu zamiast podatku akcyzowego opłaty uzależnionej od parametrów ekologicznych samochodu osobowego, stymulującej do nabywania samochodów nowszych, emitujących mniej zanieczyszczeń.

- Ograniczeniu importu pojazdów używanych i doprowadzeniu do zmiany bardzo niekorzystnej relacji ilości po raz pierwszy rejestrowanych w Polsce samochodów osobowych nowych i importowanych używanych. W obecnych uwarunkowaniach polskiego rynku samochodów osobowych jego chłonnosć szacowana jest na ok. 1 mln szt., w tym 300 do 400 tys. samochodów nowych i 600 do 800 tys. importowanych samochodów używanych. Ponad połowa samochodów importowanych jest starsza niż 10 lat.

Proponuje się popularyzację środków transportu innych niż drogowego dzięki:

- Modernizacji i wymienianiu pasażerskiego taboru kolejowego na mniej energochłonny i o wyższym komforcie podróży. Standard taboru jest jednym z kluczowych czynników
warunkujących poprawę atrakcyjności kolei jako środka transportu pasażerskiego. Efektem będzie wzrost udziału kolei w pracy przewozowej i wynikająca stąd redukcja zużycia energii i emisji gazów, w tym cieplarnianych. [U F L]

- **Modernizacji i wymianie towarowego taboru kolejowego na mniej energochłonny** i przystosowany do zmieniającej się struktury ładunków, w tym dostosowanie taboru do przewozów intermodalnych. Proponuje się zwiększenie możliwości dostosowania struktury przewozowej kolei do zmieniającego się popytu na rynku. Zgodnie z analizami największy potencjał wzrostu przewozów występuje w transporcie ładunków na większe odległości wobec tego proponuje się rozwój transportu ładunków masowych m.in. dzięki udzieleniu pomocy w pozyskaniu przez przewoźników odpowiedniej liczby wagonów specjalistycznych przeznaczonych do przewozu tego typu materiałów. Natomiast w przypadku przewozów intermodalnych proponuje się wspierać rozwój parku wagonów specjalistycznych, umożliwiających przewóz różnych jednostek ładunkowych: kontenerów, nadwozi wymiennych oraz naczep. [U F L]

- **Zwiększeniu efektywności eksploatacji pojazdów** poprzez wspieranie rozwiązań przyczyniających się do:
 - optymalizacji wagi pojazdów i/lub zoptymalizowania ich pojemności;
 - zmniejszenia oporów pojazdów (np. tocenia, aerodynamicznych);
 - poprawy efektywności przeniesienia napędu;
 - zwiększenia efektywności poszczególnych podzespołów pojazdu (np. klimatyzacji, oświetlenia);
 - wykorzystania dodatkowych źródeł energii (np. fotowoltaika, odbiór energii kinetycznej i cieplnej);
 - stosowania niskoemisyjnych silników;
 - stosowania rozwiązań umożliwiających intermodalność oraz interoperacyjność pojazdów (np. tramwajów dwusystemowych umożliwiających poruszanie się na torach kolejowych oraz tramwajowych). [U T]

- **Wspieraniu niskoemisyjnych rozwiązań w modernizacji floty w transporcie śródlądowym oraz morskim.** Transport śródlądowy oraz morski należy do najmniej emisyjnego. Wobec tego zwiększenie jego konkurencyjności poprzez modernizację środków transportu (po wcześniejszym dokonaniu udrożnienia głównych dróg w transporcie śródlądowym w Polsce) pozwoli na zmniejszenie emisyjności polskiej gospodarki. [U F]

9.4. **Priorytet D.4 Poprawa efektywności zarządzania transportem oraz wspieranie rozwoju transportu publicznego**

Atrakcyjność oraz efektywność poszczególnych środków transportu jest konsekwencją nie tylko stanu technicznego infrastruktury oraz pojazdów, ale również wynikiem podjęcia odpowiednich działań mających na celu efektywne wykorzystanie dostępnych zasobów. W ramach niniejszego...
priorytetu jako zarządzanie transportem rozumiane są wszelkie działania organizatorskie oraz regulacyjne, których konsekwencją będzie zmniejszenie emisyjności transportu. Proponuje się, aby zmiany w tym zakresie były realizowane dzięki:

- wspieraniu rozwoju systemów zarządzania ruchem pojazdów;
- rozszerzaniu rozwiązań planistyczno-prawnych dla rozwoju optymalnej struktury transportu uwzględniających zarówno potrzeby gospodarcze, preferencje pasażerów, jak również wymagania środowiskowe;
- wspieraniu bodźców do zwiększenia atrakcyjności transportu publicznego kosztem indywidualnego transportu drogowego.

Rozwój systemów zarządzania transportem doprowadzi do zmniejszenia energochłonności transportu, lepszego wykorzystania istniejących zasobów (pojazdów) – a w konsekwencji do zmniejszenia emisyjności gospodarki.

9.4.1. Działanie D.4.1. Rozwój niskoemisyjnych systemów zarządzania ruchem

Proponuje się:

- **Upowszechnienie systemów zarządzania ruchem na obszarach zurbanizowanych** oraz na drogach zamieszkanych. Na podstawie korzyści ekonomiczne związane z usprawnieniem ruchu składają się oszczędności kosztów eksploatacji pojazdów (w tym paliwa), zmniejszenie ilości zdarzeń drogowych (wypadków i kolizji), skrócenie czasu dojazdu oraz redukcja ściśłości dla środowiska (zanieczyszczenia). Proces budowy zaawansowanych systemów zarządzania ruchem w odróżnieniu od większości inwestycji infrastrukturalnych ma neutralny wpływ na bieżące funkcjonowanie systemu transportowego oraz w minimalnym stopniu ingeruje w istniejącą infrastrukturę drogową – dzięki czemu możliwe jest jego wprowadzenie bez zakłócania normalnego funkcjonowania transportu. Inwestycje w zakresie inteligentnych systemów zarządzania ruchem opierają się o dane dostarczane przez infrastrukturę telematyczną (np. czujniki, dostarczające dane o ruchu i stanie technicznym dróg), co usprawnia bieżące monitorowanie sytuacji oraz pozwala na natychmiastowe reagowanie w przypadku występowania istotnych nieprawidłości. [U F]

- **Upowszechnienie efektywnych systemów zarządzania ruchem kolejowym**, w tym opracowanie planu likwidacji wąskich gardeł. Szersze wdrożenie zaawansowanych systemów zarządzania ruchem jest jednym z warunków prowadzenia pociągów z prędkością ponad 160km/h. Wprowadzenie odpowiednich rozwiązań w tym zakresie jest konieczne do podwyższenia nie tylko maksymalnej prędkości, ale również wpływa na polepszenie przepustowości infrastruktury. Jest to jeden z czynników warunkujących poprawę atrakcyjności i efektywności kolei jako środka transportu osób i towarów. Kolejnym czynnikiem zwiększenia popularizacji transportu kolejowego oraz jego efektywności energetycznej jest opracowanie planu likwidacji tzw. wąskich gardeł poprzez wprowadzenie rozwiązań organizacyjnych i technicznych pozwalających na zwiększenie przepustowości sieci kolejowej. [U F]
• **Upowszechnianie efektywnych systemów zarządzania ruchem lotniczym.** Liczba lotów wykonywanych w polskiej przestrzeni powietrznej w ciągu najbliższych kilkudziesięciu lat wzrośnie wielokrotnie. Celem działania systemów zarządzania ruchem lotniczym jest przede wszystkim zapewnienie bezpieczeństwa przewozu pasażerów oraz towarów. Niemniej jednak czynnik związany z wykorzystaniem paliwa stanowi jeden z najważniejszych elementów wpływających na koszt operacji lotniczych oraz wpływ transportu lotniczego na środowisko. W związku z tym proponuje się wspierać inicjatywy mające na celu zmniejszenie zużycia paliwa w operacjach lotniczych poprzez rozbudowę oraz unowocześnienie istniejących systemów zarządzania ruchem lotniczym. [UF]

• **Popieranie współpracy podmiotów odpowiedzialnych za zarządzanie różnymi środkami transportu** oraz infrastrukturą w celu lepszej integracji sieci transportowej, w tym tworzenia warunków do rozwoju transportu kombinowanego oraz intermodalnego. Pojawiającym się wyzwaniem związanych z optymalnym wykorzystaniem środków transportu jest brak kooperacyjności pomiędzy różnymi gałęziami transportu, nie tylko ze względów infrastrukturalnych, ale również związanych z zarządzaniem infrastrukturą. Konieczne jest podjęcie działań mających na celu współpracę władz samorządowych z operatorami zarządzającymi poszczególnymi formami transportu. Zwiększenie poziomu współpracy nastąpi poprzez: opracowanie dobrych praktyk i wytycznych oraz wprowadzenie zachęty do nawiązywania zinstytucjonalizowanej kooperacji poszczególnych podmiotów zarządzających infrastrukturą. [UF]

• **Wspieranie planowania przestrzennego na szczeblu samorządu terytorialnego**, które uwzględniałyby konieczność rozwoju niskoemisyjnych form transportu. Gospodarowanie przestrzenią w istotny sposób determinuje poziom popytu na usługi transportowe w lokalnych systemach urbanistycznych. Niekontrolowany rozwój miast (suburbanizacja oraz tzw. urban sprawl) prowadzi do wzrostu natężenia ruchu drogowego na przedmieściach. W związku z tym proponowane jest prowadzenie szkoleń w zakresie optymalnego korzystania z istniejących narzędzi planistycznych w celu przeciwdziałania negatywnym skutkom „rozlewania się miast” oraz optymalnego planowania usług transportowych w ramach planowania przestrzennego. [UF]

9.4.2. **Działanie D.4.2. Rozwój niskoemisyjnego transportu publicznego (zarządzanie transportem)**

Funkcjonowanie dobrze zorganizowanego transportu publicznego (szczególnie na obszarach zurbanizowanych) stanowi konieczność nie tylko w związku z dokonywaną transformacją niskoemisyjną, ale wynika również z potrzeby rozwiązania podstawowych wyzwań płynących z dynamicznego rozwoju. Bez dobrej funkcjonującego transportu publicznego nie jest możliwe harmonijne funkcjonowanie większości miast. Niemniej jednak warunkiem popularyzacji transportu publicznego jest poprawa standardu świadczonych usług. Jest to możliwe dzięki zastosowaniu odpowiedniej organizacji przewozów oraz stosowaniu taryf zachęcających do rezygnacji z transportu indywidualnego. Proponuje się, aby działania realizowane w tym zakresie obejmowały:

Budowę nowoczesnych systemów zarządzania transportem publicznym na obszarach miejskich. Nowoczesne systemy zarządzania ruchem (urządzenia monitorujące ruch, centra zarządzania, sygnalizacja, znaki zmiennej treści, system transmisji danych i in.) umożliwiają bardziej efektywne wykorzystanie istniejącej infrastruktury drogowej oraz redukcję zużycia energii. W związku z tym proponuje się wspieranie budowy inteligentnych systemów zarządzania transportem publicznym pozwalających m.in. na
- monitorowanie ruchu i warunków zewnętrznych;
- stworzenie warunków, dzięki którym nastąpi uprzywilejowanie transportu publicznego względem transportu indywidualnego;
- optymalizację i sterowanie ruchem;
- wykrywanie zdarzeń i reagowanie na nie;
- gromadzenie danych niezbędnych dla funkcjonowania modułów zarządzania ruchem, zarządzania strategicznego oraz działań planistycznych i projektowych. [U T F L]

Tworzenie nowych instrumentów zachęcających mieszkańców do korzystania z usług transportu publicznego w centrum miast. Skutecznym środkiem wpływającym na zmianę zachowania, sprawdzonym w wielu miastach na świecie jest wprowadzenie taryf zachęcających pasażerów do korzystania z publicznych środków transportu. W wyniku transferu pasażerów do transportu publicznego i niezmylonych (np. rower) nastąpi redukcja natężenia ruchu na drogach. Odpowiednim elementem zachęcającym uczestników ruchu do wyboru transportu publicznego jest również odpowiednie zarządzanie podażą miejsc parkingowych w centrum miast. Powiązanie odpowiedniej liczby miejsc parkingowych oraz opłat związanych z możliwością parkowania w centrum miast w przypadku odpowiedniej polityki (dopasowanie możliwości transportu publicznego do popytu, istnienie sieci parkingów P+R na obrzeżach miast) stwarza dodatkową przesłankę do popularyzacji niskoemisyjnych form przemieszczania. W związku z tym proponuje się realizowanie przedsięwzięć mających na celu udzielenie pomocy JST w zakresie tworzenia odpowiednich planów, dokonania oceny i prognoz kierunków rozwoju transportu w aglomeracjach oraz promocję wymiany najlepszych praktyk pomiędzy samorządami. [U F L]

Udzielanie pomocy JST we wdrażaniu pilotażowych projektów dla wybranych rozwiązań technicznych i organizacyjnych. Stworzenie zintegrowanego systemu zarządzania ruchem (szczególnie w dużych ośrodkach miejskich) łączy się z potrzebą przetestowania wielu
niezależnych podsystemów. W przypadku nowych, innowacyjnych rozwiązań inwestycje obarczone są wysokim poziomem ryzyka. W związku z tym proponuje się wspomaganie wybranych projektów testowych oraz pilotażowych sprawdzających funkcjonowanie nowych rozwiązań technicznych i organizacyjnych (zaawansowanych systemów zarządzania ruchem uwzględniających priorytet transportu zbiorowego, w tym publicznego, rozwiązania ITS wspomagające transport publiczny i logistykę miejską, rozwiązania promujące wykorzystanie ruchu rowerowego, ulepszenia skutkujące optymalnym wykorzystaniem pojemności pasażerskiej oraz ładunkowej pojazdów, systemy oświetlenia dróg oraz inne rozwiązania wpływające na redukcję emisji). [UF]

9.5. **Priorytet D.5 Rozwój i zastosowanie niskoemisyjnych paliw w transporcie oraz magazynowania energii w środowiskach transportu**

Transformacja niskoemisyjna w transporcie jest możliwa dzięki wykorzystaniu mniej emisyjnych paliw oraz możliwości magazynowania energii w pojazdach - energii, która w innym wypadku byłaby bezpoważnie utracona. Oprócz redukcji emisji, dzięki podjęciu działań w tym zakresie możliwe jest zmniejszenie zapotrzebowania na paliwa importowane z zagranicy oraz zwiększenia niezależności energetycznej.

W przypadku transportu większość energii zużywana jest w pojazdach zasilanych przez paliwa bazujące na ropie naftowej. Wykorzystanie innych, alternatywnych paliw wiąże się z koniecznością pokonania barier infrastrukturalnych, technicznych, administracyjnych, behawioralnych oraz ekonomicznych. Szczególny potencjał w tym obszarze został zidentyfikowany w paliwach metanowych oraz biopaliwach. Proponowane rozwiązania przyczynią się do zwiększenia udziału tych paliw w strukturze paliw wykorzystywanych w transporcie.

Dodatkowe możliwości redukcyjne przy jednoczesnym rozwoju gospodarczym możliwe są dzięki podjęciu działań w zakresie zwiększania potencjału pojazdów do magazynowania energii – zarówno w trakcie ich eksploatacji (np. systemy pozyskiwania energii w trakcie hamowania), jak również jako magazynów energii wykorzystywanych w trakcie pojawiających się nadwyżek energii w rozproszonych/inteligentnych sieciach energetycznych – np. ładowanie pojazdów elektrycznych w przydomowych instalacjach elektrycznych. Działania podjęte w tym zakresie przyczynią się do rozwoju niskoemisyjnego transportu oraz będą pośrednio wspierać przedsięwzięcia związane z rozwojem rozproszonej energetyki prosumenckiej.

9.5.1. **Działanie D.5.1. Wspieranie zastosowania paliw metanowych, biopaliw i biogazu**

Proponuje się upowszechnienie zastosowania paliw metanowych (CNG, LNG) i biopaliw w transporcie poprzez:

- **Wprowadzenie preferencyjnej lub powrót do zerowej stawki podatku akcyzowego dla gazu ziemnego w postaci CNG do celów pędnych.** [L]

- **Zmniejszenie częstotliwości i zakresu kontroli zbiorników CNG zainstalowanych w pojazdach CNG przez Transportowy Dozór Techniczny, szczególnie w odniesieniu do pojazdów fabrycznie przystosowanych do użytkowania paliwa CNG (dotyczy to zarówno...**
okresu przez jaki jest ważna homologacja, jak i zmodyfikowania procedury badań wysokociśnieniowych zbiorników kompozytowych na paliwa metanowe). [L]

- **Wprowadzenie możliwości samodzielnego tankowania pojazdów samochodowych napędzanych CNG i LNG na terenie RP przez ich użytkowników.** Brak takiej możliwości wynika z przepisów rozporządzenia Ministra Infrastruktury z dnia 15 lipca 2011 r. w sprawie warunków technicznych dozoru technicznego w zakresie projektowania, wytwarzania, eksploatacji, naprawy i modernizacji urządzeń ciśnieniowych. Samodzielne tankowanie obniży koszty funkcjonowania stacji tankowania gazem ziemnym, co będzie miało bezpośredni wpływ na ekonomiczną opłacalność eksploatacji punktów tankowania. [L]

- **Upowszechnienie informacji o możliwości parkowania samochodów zasilanych CNG i LNG na podziemnych parkingach.** [U]

- **Upowszechnienie zastosowania bardziej zaawansowanych biopaliw w transporcie.** Proponuje się wspierać działania polegające na ocenie możliwości zastosowania nowych paliw, w tym bardziej zaawansowanych biopaliw (drugiej i trzeciej generacji) w transporcie przy jednoczesnym monitorowaniu trendów na rynku paliw metanowych, biopaliw i biogazu. [U F]

9.5.2. Działanie D.5.2. Efektywne magazynowanie energii elektrycznej w pojazdach

Jedną z metod zwiększenia efektywności wykorzystania energii w pojazdach jest możliwość magazynowania jej nadwyżek w trakcie postoju (prosument) i eksploatacji (hamowanie). W związku z tym pożądane jest:

- **Wdrażanie systemów odzysku i magazynowania energii elektrycznej w transporcie szynowym i kolejowym.** Współczesny tabor elektryczny odzyskuje obecnie do ok. 25% energii kinetycznej pojazdu. Pozostała część energii kinetycznej zostaje rozproszena na ciepło w opornikach hamowania i urządzeniach hamowania mechanicznego. W przyszłości dążyć należy do odzysku energii kinetycznej pojazdu w większym stopniu (nawet do 85%), z możliwością jej zwrotu do sieci energetycznej. Stwarza to możliwość zmnieszenia zużycia energii przez elektryfikowany transport szynowy i w efekcie redukcję emisji gazów cieplarnianych. By rozwiązanie to było opłacalne, powinien powstać system zachęt (wynikający z uregulowań prawnych) skierowany zarówno do producentów, samorządów oraz przedsiębiorstw energetycznych. [U T F L]

- **Badanie możliwości wykorzystania baterii samochodów elektrycznych jako rozproszonych elementów inteligentnej sieci elektroenergetycznej (smart grid) do stabilizacji obciążenia sieci elektroenergetycznej kraju.** Stworzenie takiego systemu łączy się zarówno z koniecznością dostosowania sieci, wyposażenia aut w odpowiednie systemy ładowające oraz akumulatory. W pierwszej kolejności należy zbadać możliwości i koszty upowszechnienia koniecznych rozwiązań w Polsce oraz listę niezbędnych zmian w obowiązującym prawie. [U T F L]
10. **Cel szczegółowy E: Promocja wzorców zrównoważonej konsumpcji**

Analizy wskazują, że struktura konsumpcji jest istotnym czynnikiem determinującym poziom emisji danego kraju (Europejska Agencja Środowiska, EAŚ). Transformacja w kierunku gospodarki niskoemisyjnej będzie wymagała wielu inwestycji o charakterze materialnym. Ich skuteczność będzie zależeć również od zmian zachowań konsumenckich. Przykłady innych gospodarek o nieco wyższym poziomie rozwoju niż gospodarka Polski wskazują, że obniżenie ilości emisji nie jest możliwe bez zmiany dotychczasowych zachowań konsumentów. W przeciwnym przypadku, mimo zwiększenia produktywności i efektywności wykorzystania zasobów, istnieje ryzyko ogólnego zwiększenia poziomu zużycia surowców przez gospodarkę (rebounce effect) oraz wzrostu ilości emisji.

Zgodnie z analizami Europejskiej Agencji Środowiska poziom rocznej emisji gazów cieplarnianych w Polsce wynikający z konsumpcji dóbr i usług wynosi około 8 ton ekwiwalentu dwutlenku węgla w przeliczeniu na osobę. Stosunkowo niewysoki wynik jest konsekwencją mniejszej siły nabywczej polskich konsumentów w porównaniu do większości państw UE. Wraz ze wzrostem zamożności oczekuje się zwiększenia poziomu konsumpcji w Polsce (szczególnie w zakresie transportu), co w konsekwencji może prowadzić do zwiększenia ogólnego poziomu emisji. Te same dane wskazują ponadto, że około 2/3 emisji związanych z konsumpcją wynika z realizacji potrzeb w zakresie mieszkańców, dostarczania żywności oraz transportu.

Badania świadomości konsumenckiej prowadzonej przez Ministerstwo Środowiska wskazują na stosunkowo niewielki (np. w porównaniu ze krajami nordyckimi) poziom świadomości w zakresie wyboru przyjaznych dla środowiska dóbr konsumenckich. Zgodnie z danymi za 2012 rok, tylko 1/3 konsumentów zwraca uwagę na oznaczenia ekologiczne zamieszczone na produktach, natomiast większość nie identyfikuje podstawowych oznaczeń środowiskowych. Do działań oszczędnościowych oraz racjonalizujących poziom wykorzystania zasobów prowadzą przede wszystkim impulsy ekonomiczne – konsumenti oszczędzają te dobra, których użyć wiąże się z ponoszeniem wysokich kosztów mających istotny wpływ na budżet domowy. W tym kontekście należy zaznaczyć, że tylko co trzeci Polak deklaruje gotowość ponoszenia dodatkowych obciążeń związanych z wyborem rozwiązań ekologicznych lub zakupem „czystej energii”. Dodatkowy, negatywny wpływ na postawy ekologiczne miało spowolnienie gospodarcze – wraz ze zmniejszeniem dochodów rozporządzalnych w gospodarstwach domowych maleje skłonność do dokonywania wyborów proekologicznych.

Na niską świadomość społeczeństwa w zakresie zrównoważonej konsumpcji wpływają m.in. luki w rozwiązaniach systemowych, rozpoczynając od zakresu edukacji ekologicznej na poziomie szkół podstawowych po trudności związane z identyfikacją produktów charakteryzujących się optymalnym wykorzystaniem zasobów oraz niewielkim poziomem emisyjności w całym cyklu życia. Nie istnieje system, który w całościowy sposób informowałby zarówno konsumentów, jak również regulatorów o efektywności środowiskowej wytwarzanych produktów (brak bazy danych, jednolitej metodyki, systemu wskaźników).

Szczególny potencjał do wprowadzania rozwiązań niskoemisyjnych widoczny jest w działaniach administracji publicznej – przede wszystkim w zakresie zamówień publicznych oraz gospodarki przestrzennej. Niestety, mimo pewnych postępów, brakuje całościowych rozwiązań w tym zakresie. Należy przy tym pamiętać, że Państwo jest największym konsumentem i ze względu na...

Proces priorytetyzacji obszarów zidentyfikowanych na potrzeby NPRGN potwierdza istotność oraz wpływ implementacji obszarów w zakresie promocji zrównoważonej konsumpcji na realizację pozostałych celów Programu. Obszary z zakresu promocji nowych wzorców konsumpcji stanowią około 10% wszystkich obszarów działań i mimo ich „miękkiego” charakteru płasują się stosunkowo wysoko na liście obszarów. Ponadto mają one charakter horyzontalny – potrzebę realizacji działań w zakresie promocji nowych wzorców konsumpcji zidentyfikowano w każdym z 10 analizowanych sektorów gospodarki.

Celem programu w obszarze promocji zrównoważonych wzorców konsumpcji jest stworzenie efektywnych oraz racjonalnych kosztowo rozwiązań systemowych, dzięki którym, mimo zwiększenia zamożności społeczeństwa oraz wielkości jego konsumpcji (w perspektywie do roku 2050), możliwe będzie wykorzystanie zachowań konsumpcyjnych jako narzędzia do dokonania transformacji niskoemisyjnej w całej gospodarce.

Cel ten będzie możliwy do osiągnięcia dzięki stworzeniu impulsów zachęcających do bardziej zrównoważonego użytkowania dóbr konsumenckich oraz opracowania zachetę do wybierania produktów charakteryzujących się wysokim poziomem efektywności środowiskowej w całym cyklu życia, jak również poprzez stworzenie rozwiązań systemowych, dzięki którym zarówno producenci, jak również konsumenci będą mogli podejmować swoje decyzje z uwzględnieniem potrzeby transformacji niskoemisyjnej.

Dzięki realizacji programu liczba produktów charakteryzujących się wysokim, negatywnym wpływem na środowisko zostanie zminimalizowana w perspektywie do roku 2050, konsumenci będą świadomi roli swoich wyborów w transformacji niskoemisyjnej gospodarki i będą uwzględniać tę wiedzę w trakcie codziennych wyborów konsumenckich. Działania państwa jako jednego z najważniejszych konsumentów na rynku zdynamizują ten proces i będą wzorem dla pozostałych grup podejmujących działania w tym zakresie.

Zgodnie z analizami wykonanymi w związku z opracowaniem NPRGN, dzięki podjęciu zmian w zachowaniach konsumenckich możliwe jest zredukowanie emisji wynikających z użytkowania niektórych dóbr i usług od około 20 do nawet 80% przy zachowaniu podobnego poziomu satysfakcji. Dokładny poziom potencjału redukcyjnego zależny jest jednak od wielu indywidualnych zmiennych.

47 Na podstawie opracowania pn. Analiza potencjału redukcji emisji związanego ze zmianami wzorców konsumpcji na przykładzie wybranych grup produktów – studia przypadku.
10.1. Priorytet E.1 Promocja wzorców zrównoważonej konsumpcji w edukacji

Doświadczenie krajów Europy Zachodniej wskazuje, że wraz ze wzrostem zamożności społeczeństwa gwałtownie rosły poziom konsumpcji. Podobne procesy dostrzegane są w Polsce - przykładowo w latach 2000-2014 realny poziom wydatków konsumpcyjnych wzrósł ponad dwukrotnie. Biorąc pod uwagę horyzont czasowy realizacji NPRGN należy przypuszczać, że różnice pomiędzy Polską a większością Państw UE wynikające z mniejszej siły nabywczej polskiego społeczeństwa zostaną stopniowo zniwelowane. Jednocześnie wraz ze wzrostem zamożności istnieje ryzyko zwiększenia emisji z konsumpcji. W związku z tym pożądane jest podjęcie działań, dzięki którym zmiana struktury konsumpcji w przyszłości będzie sprzyjać upowszechnieniu mniej emisyjnych produktów i usług przy jednoczesnym zaspokajaniu potrzeb społeczeństwa.

Podstawowym kierunkiem zmian w tym zakresie powinno być zwiększenie świadomości na temat możliwości zaspokojenia tych samych potrzeb przez wykorzystanie mniej emisyjnych dóbr. Konieczne jest zarówno dostarczenie konsumentom wiedzy niezbędnej do podejmowania świadomych decyzji konsumenckich, jak i wyposażenie ich w umiejętność krytycznej interpretacji komunikatów pojawiających się na rynku. Uświadamianie pryzwanych konsumentów powinno rozpoczynać się już na etapie edukacji podstawowej oraz ogólnej. Ważne jest, aby wiedza w tym zakresie miała charakter praktyczny i odzwierciedlała tendencje pojawiające się na rynku. Ponadto nieodzowne jest upowszechnienie praktycznej wiedzy w zakresie zrównoważonej konsumpcji wśród dorosłych, np. w ramach uniwersytetów trzeciego wieku.

W ramach niniejszego priorytetu proponuje się działania, dzięki którym kwestie dotyczące zrównoważonej konsumpcji zostaną w większym niż dotychczas stopniu uwzględnione w edukacji. Wynikiem proponowanych działań będzie włączenie kwestii niskoemisyjnych do kanonu ogólnego wykształcenia zarówno na poziomie ogólnym, jak i specjalistycznym.

Dodatkowo w ramach priorytetu promowane będą formy edukacji wykorzystujące nowoczesne technologie, dzięki czemu możliwe będzie zmniejszenie emisyjności samego procesu nauczania (np. e-learning).

10.1.1. Działanie E.1.1. Większe uwzględnienie zasad zrównoważonego rozwoju w edukacji

W ramach niniejszego działania proponuje się:

- **Włączenie do programów nauczania obszaru zrównoważonego z wzorcami zrównoważonej konsumpcji.** Do podstawowych umiejętności niezbędnych do podejmowania świadomych decyzji konsumenckich zaliczyć można: umiejętność czytania oraz rozpoznawania etykiet i oznaczeń na produktach; umiejętność krytycznego analizowania przekazów reklamowych; umiejętność wyszukiwania informacji dotyczących wpływu konsumpcji na środowisko; zdolność do optymalnego planowania budżetu domowego; a także znajomość praw i obowiązków konsumentów. Badania świadomości ekologicznej wskazują na to, że Polacy są świadomi zagrożeń wynikających z nadmiernego wykorzystywania zasobów. Niemniej jednak nie znają praktycznych sposobów zapobiegania temu zjawisku. Ocenia się, że odpowiedni dobór programów edukacyjnych przełoży się na wzrost świadomości ekologicznej dzieci.
i młodzieży, co pozwoli na wykształcenie właściwych nawyków i zachowań w dorosłym życiu. [U]

- **Włączenie do programów nauczania ogólnego tematyki związanej z racjonalnym gospodarowaniem zasobami, czystymi technologiami, efektywnością energetyczną, zielonymi miejscami pracy oraz społeczną odpowiedzialnością biznesu.** Transformacja niskoemisyjna wymaga dokonania istotnych zmian w wybranych gałęziach gospodarki. Szczególnie znaczenie mają działania podejmowane w obszarze gospodarowania zasobami, rozwójem technologii, dostarczaniu energii, tworzeniem miejsc pracy w branżach powiązanych ze środowiskiem oraz społeczną odpowiedzialnością biznesu. Zwiększenie poziomu wiedzy wśród uczniów w ww. obszarach może doprowadzić do przyspieszenia transformacji niskoemisyjnej dzięki zwiększeniu poziomu akceptacji społeczeństwa dla realizacji koniecznych działań. Dodatkowym efektem podejmowanych przedsięwzięć może być wzrost zainteresowania uczniów podejmowaniem studiów w obszarze racjonalnego gospodarowania zasobami. [U]

- **Wyposażenie ośrodków edukacyjnych w odpowiedni sprzęt dydaktyczny.** Efektywność procesu nauczania w kwestiach zrównoważonej konsumpcji zależy m.in. od atrakcyjności przekazywanej wiedzy oraz możliwości jej przyswojenia przez uczniów. Wobec tego proponuje się wyposażyć sale lekcyjne w sprzęt pozwalający na wykonywanie większej liczby eksperymentów, pracy na modelach oraz innych form nauczania. [F]

- **Promowanie procesu wyłaniania lokalnych liderów zarządzających nieformalną edukacją konsumencką na obszarach poszczególnych gmin.** Istotną barierą dla implementacji wzorców zrównoważonej konsumpcji w Polsce jest niski poziom zaufania społecznego oraz współpracy w ramach społeczności lokalnych. Wobec tego pożądane jest tworzenie sieci lokalnych liderów zrównoważonej konsumpcji, którzy będą mogli inicjować niezależne działania w zakresie promocji, biorąc pod uwagę lokalne uwarunkowania, potrzeby oraz możliwości. Rolę tą powinny pełnić przede wszystkim lokalne stowarzyszenia, fundacje oraz inni zinstytucjonalizowani przedstawiciele społeczności lokalnej. [U F]

- **Wdrożenie wzorców zrównoważonej konsumpcji w edukacji dorosłych.** Zgodnie z prognozami struktura wiekowa polskiego społeczeństwa ulega będzie znacznym zmianom. Wraz ze zmieniającymi się potrzebami rynku coraz większa liczba dorosłych będzie podejmować naukę na kolejnych etapach życia. Wobec tego proponuje się podejmowanie tematów związanych z promocją wzorców zrównoważonej konsumpcji przez instytucje kształcące dorosłych, uniwersytety trzeciego wieku oraz otwarte uniwersytety. [U F]

10.1.2. **Działanie E.1.2. Promocja edukacji na odległość oraz wykorzystania Internetu w procesach edukacyjnych**

W ramach niniejszego działania proponuje się:

- **Dalsze upowszechnianie cyfryzacji w sektorze edukacji.** Większość szkół jest wyposażona w podstawowe urządzenia elektroniczne, takie jak komputery stacjonarne, laptopy i rzutniki multimedialne. Mniej rozpowszechnione są tablice interaktywne oraz platformy e-learningowe. Mimo dostępności wielu nowych urządzeń, znaczną ich część nie jest wykorzystywana w nauczaniu ze względu na brak nawyków kadry pedagogicznej oraz nieumiejętność wykorzystywania nowych technologii. Ma to szczególnie istotne znaczenie
w nauce przedmiotów matematyczno-przyrodniczych. W związku z tym proponuje się zidentyfikować działania mające na celu lepsze wykorzystanie posiadanej sprzętu, edukację nauczycieli oraz wspieranie optymalnego planowania zakupów sprzętu komputerowego do potrzeb poszczególnych jednostek edukacyjnych. Działania te powinny obejmować szkolenia dla nauczycieli, tworzenie scenariuszy lekcji z wykorzystaniem pomocy multimedialnych oraz oprogramowania wspierającego nauczycieli w przeprowadzaniu np. wirtualnych eksperymentów. [U]

- **Promowanie wykorzystania Internetu szerokopasmowego.** Korzystanie z Internetu w praktyce oznacza m.in. dostęp do wiedzy, informacji, komunikacji, poszukiwania i zamieszczania ofert pracy, pogłębiania wiedzy z danej dziedziny, uczestnictwa w transmitowanych konferencjach, prowadzenia e-biznesu, e-learningu oraz coraz bardziej popularnych e-zakupów. Rezultaty badań wskazują, że Polska, obok Grecji, Rumunii i Bułgarii znajduje się w grupie krajów o najwyższym odsetku osób o niskich kompetencjach cyfrowych, bądź też osób całkowicie ich pozbawionych. Wykluczenie cyfrowe dotyka aż 13 mln Polaków, z czego 10 mln to osoby generacji 55+. Tymczasem, jak się ocenia, w 2020 roku 90 proc. zawodów będzie wymagało kompetencji cyfrowych. Nasuwa się wniosek, że społeczeństwo o takiej strukturze wykluczenia nie będzie w stanie zbudować gospodarki opartej na wiedzy, o dużym stopniu konkurencyjności i innowacyjności, co ma ścisły związek z gospodarką niskoemisyjną. Mając powyższe na względzie proponuje się podjęć działania edukacyjne i kampanie informacyjne, które pozwolą przyswoić niezbędne umiejętności konieczne do posługiwania się nowymi technologami informacyjno-komunikacyjnymi. [U]

10.2. Priorytet E.2 Wspieranie dostępności oraz wiarygodności informacji na temat wpływu konsumpcji poszczególnych produktów i usług na emisyjność gospodarki.

Szczytu się, że rynek tzw. dóbr środowiskowych będzie rósł w tempie kilkunastu procent rocznie - nawet przy uwzględnieniu spowolnienia gospodarczego występującego na świecie po 2008 r. osiągając w 2020 r. wartość dwukrotnie wyższą niż w 2010 r. Wzrost ten zachęca niektórych producentów do stosowania informacji środowiskowych, których wiarygodność często nie może być zweryfikowana tak, aby zachęcić konsumentów do wyboru konkretnych produktów. Zgodnie z danymi na rynku międzynarodowym stosuje się kilkaset oznaczeń opisujących efektywność środowiskową produktów i usług oraz kilkadziesiąt sposobów obliczania tzw. śladu węglowego. W konsekwencji, mimo stosowania wyrafinowanych narzędzi oraz obliczeń, w wielu przypadkach nie jest możliwe jednoznaczne odpowiedzenie na pytanie, czym tak naprawdę jest produkt ekologiczny. Coraz większa liczba konsumentów wyraża wolę kupowania produktów przyjaznych dla środowiska – jednak dokonanie świadomych wyborów nie jest łatwe, a często niemożliwe ze względu na brak stosownej informacji.

Powyższy stan rzeczy prowadzi do zmnieszenia efektywności oraz skuteczności prowadzonych akcji informacyjnych mających na celu promocję nowych wzorców konsumpcji. Wg badań Komisji Europejskiej prawie połowa konsumentów nie zna lub nie ufa stosowanym systemom znakowania.

W ramach niniejszego priorytetu proponuje się wdrożenie działań, dzięki którym możliwe będzie zwiększenie zaufania konsumentów do informacji dotyczących emisyjności poszczególnych grup.
produktych i usług oraz wspieranie tych dóbr, które w optymalny sposób przyczyniają się do realizacji transformacji niskoemisyjnej w Polsce.

Wraz ze wzrostem wiarygodności danych dotyczących efektywności środowiskowej poszczególnych produktów i organizacji możliwe będzie zwiększenie zaufania pomiędzy przedsiębiorcami oraz konsumentami oraz przynajmniej częściowa eliminacja informacji wprowadzających konsumentów w błąd.

10.2.1. Działanie E.2.1. Gromadzenie przez sektor prywatny informacji na temat emisyjności produktów w całym cyklu życia

W ramach niniejszego działania proponuje się:

- **Wprowadzenie wytycznych obejmujących szczegółowy wykaz informacji, które powinny być zbierane przez przedsiębiorstwa w całym cyklu życia produktów.** Możliwość oceny emisyjności poszczególnych grup produktów, organizacji lub najważniejszych w skali gospodarki procesów łączy się z koniecznością uzyskania danych dotyczących wykorzystania zasobów oraz oceny przepływów materiałów i energii. Informacje te mogłyby zostać wykorzystane w trakcie prowadzenia analiz związanych z efektywnością wykorzystania zasobów. Proces ten może być czasochłonny oraz kosztoschłonny – niemniej jednak daje szanse na eliminację nieracjonalnego wykorzystania zasobów, a w konsekwencji może przyczynić się do zmniejszenia poziomu emisyjności. [U L]

- **Zbudowanie narzędzi przeznaczonych dla MŚP do komunikowania informacji dotyczących emisyjności produktów.** Większość małych przedsiębiorstw nie jest w stanie monitorować dokładnego przepływu materiałów oraz energii w przedsiębiorstwie ze względu na złożoność koniecznych analiz. Taki stan uniemożliwia niewielkim przedsiębiorstwom uzyskanie wielu certyfikatów potwierdzających ich działania niskoemisyjne. W związku z tym proponuje się opracowanie i upowszechnienie wśród MŚP prostych narzędzi, dzięki którym możliwe będzie dokonanie uproszczonej oceny przepływu materiałów i energii w firmie oraz komunikowanie tych informacji na rynku. [U F]

- **Zbudowanie systemu zachęt dla przedsiębiorstw w zakresie pozyskiwania oraz upowszechniania informacji dotyczących emisyjności produktów.** Uzyskanie koniecznych danych oraz przekazanie uzyskanych informacji dotyczących emisyjności poszczególnych produktów do konsumentów jest złożonym zadaniem, które łączy się z koniecznością zaangażowania czasu oraz kapitału. Wobec tego należy rozważyć wprowadzenie systemu zachęt dla przedsiębiorstw, których efektem byłoby zwiększenie potencjalnych zysków firm decydujących się na komunikowanie informacji dotyczących emisyjności produktów na rynku. Do najważniejszych z nich zaliczyć można wprowadzenie preferencyjnych stawek podatkowych dla niskoemisyjnych dóbr, opracowanie specyficznych kryteriów zamówień publicznych, które preferowałyby produkty zawierające jasne informacje dotyczące ich wpływu na środowisko oraz poziomu emisyjności w całym cyklu życia, jak również w dalszej kolejności uzależnianie udzielenia pomocy publicznej dla wytwórców od posiadania informacji dotyczących emisyjności wytwarzanych przez nich towarów. Koszty ponoszone w związku z gromadzeniem informacji środowiskowej oraz jej upowszechnieniem wśród konsumentów mogą zostać zrekompensowane poprzez większy popyt na towary z
czytelnym oznaczeniem śladu środowiskowego związany z prowadzonymi działaniami edukacyjnymi. [U L F]

10.2.2. Działanie E.2.2. Upowszechnienie metod oceny cyku życia w komunikacji biznesowej oraz konsumenckiej

Metoda oceny cyku życia pozwala odpowiedzieć na pytanie jak dany produkt wpływa na środowisko począwszy od etapu wydobycia surowców koniecznych do jego wyprodukowania, poprzez jego wytworzenie, dystrybucję, użytkowanie, aż po ponowne wykorzystanie materiałów na etapie zagospodarowania odpadów. Metoda ta pozwala pozytywnie wpłynąć na efektywność wykorzystania zasobów w przedsiębiorstwach dzięki optymalizacji procesów oraz identyfikacji strat materiałów i energii. Ponadto uzupełnia standardowy rachunek ekonomiczny o przepływ materiałów i ich wpływ na środowisko. W ramach Programu proponuje się:

- Nawiązywanie współpracy pomiędzy środowiskiem biznesowym, organizacjami pozarządowymi oraz ośrodkami analitycznymi (w tym naukowymi) w zakresie opracowania optymalnych sposobów komunikacji wyników LCA (ocena cyklu życia: Life Cycle Assessment) w relacjach biznesowych oraz informacji konsumenckiej. Metoda LCA jest zaawansowanym sposobem badania efektywności produktów i organizacji. Jej skuteczność w komunikacji konsumenckiej zależy od przyjętej formy oraz złożoności przekazywanych informacji. Wobec tego konieczne jest opracowanie ogólnie akceptowalnych zasad informowania konsumentów o wynikach stosowanych przez firmy testo.

- Promowanie wykorzystania raportów oraz sprawozdań biznesowych do informowania zainteresowanych interesariuszy o działaniach podjętych przez biznes w zakresie transformacji niskoemisyjnej. Raporty te mogą stanowić źródło pogłębianych informacji na temat kierunków rozwoju przedsiębiorstw, stosowanych przez nie narzędzi mających na celu lepsze gospodarowanie zasobami oraz redukcję zużycia energii.

- Wprowadzenie do kryteriów wyboru największych projektów środowiskowych i infrastrukturalnych, które są finansowane ze środków publicznych, oceny ich wpływu na emisyjność gospodarki. Proponuje się, aby wybór największych projektów środowiskowych i infrastrukturalnych uwzględniał konieczność transformacji niskoemisyjnej. Wobec tego konieczne jest wprowadzenie kryteriów, dzięki którym możliwe będzie choćby w przybliżonym stopniu odpowiedzenie na pytanie, jak realizowana inwestycja wpłynie na poziom emisyjności gospodarki. [U L]

- Udzielnie pomocy przedsiębiorcom w Polsce w aktywnym uczestnictwie w przedsięwzięciach prowadzonych na szczeblu europejskim oraz międzynarodowym w zakresie opracowywania norm oraz zasad ocen wpływu produktów i organizacji na środowisko. Kwestie dotyczące normalizacji sposobów oceny wpływu produkcji i konsumpcji na środowisko oraz poziom emisyjności gospodarki ustalone są coraz częściej w trakcie prac wyspecjalizowanych międzynarodowych komitetów. Przedsiębiorstwa oraz izby zrzeszające przedsiębiorstwa w Polsce najczęściej nie posiadają wystarczających zasobów, aby móc reprezentować swoje interesy na tych forach. Wobec tego konieczne jest podjęcie działań, których wynikiem będzie zwiększenie poziomu zaangażowania polskich przedsiębiorstw w pracach międzynarodowych organizacji normalizacyjnych. Przedsięwzięcia te mogą dotyczyć...
pomocy w zrzeszaniu się MŚP, udzielania porad w zakresie sposobu organizacji oraz pracy poszczególnych organizacji międzynarodowych oraz wiedzy na temat korzyści płynących z udziału w pracach poszczególnych instytucji. [U F]

- **Wprowadzenie odpowiednich regulacji na rynku reklamowym dotyczących sposobu informowania o charakterystyce środowiskowej produktów.** Wiele przekazów reklamowych promuje nieracjonalne zachowania konsumenckie, które prowadzą do marnowania zasobów oraz energii. Dodatkowo niektóre informacje wprowadzają konsumentów w błąd. Taki stan rzeczy może prowadzić do niwelowania pozytywnych działań podejmowanych w zakresie zrównoważonej produkcji oraz zwiększania poziomu emisji na etapie konsumpcji. Wobec tego regulacje takie powinny zawierać wykaz praktyk, których nie powinno stosować się w komunikacji konsumenckiej oraz regul informowania konsumentów o efektywności środowiskowych produktów. [L]

10.2.3. **Działanie E.2.3. Dostosowanie systemu sprawozdawczości oraz statystyki publicznej do potrzeb związanych z oceną emisyjności głównych grup produktów i organizacji**

Dostarczenie konsumentom oraz partnerom biznesowym wiarygodnych informacji na temat wpływu odpowiednich zachowań konsumenckich na emisyjność gospodarki jest uzależnione od budowy systemu dostarczającego danych niezbędnych do przeprowadzenia odpowiednich analiz. Uzyskanie części danych jest uzależnione od sposobów zarządzania i monitoringu w przedsiębiorstwie (działanie A. 2.1.) – reszta wymaga podjęcia działań w zakresie statystyki publicznej. Wobec tego proponuje się:

- **Uaktualnienie lub pozyskanie danych na temat poziomu emisyjności wybranych grup substancji i materiałów wykorzystywanych w procesach produkcyjnych.** Proces ten będzie wymagał stworzenia katalogu najważniejszych substancji wykorzystywanych w poszczególnych procesach produkcyjnych; opracowania scenariuszy związanych z wariantami wykorzystania substancji na kolejnych etapach cyklu życia oraz sposobu wycofania substancji z rynku (gospodarka odpadami). [U F]

- **Zbudowanie bazy danych zawierającej informacje konieczne do przeprowadzenia analiz LCA przez przedsiębiorstwa działające w Polsce.** Będzie ona zawierać istotne informacje konieczne do przeprowadzenia oceny w oparciu o dostępne dane dotyczące m.in. pozycji przedsiębiorstwa w łańcuchu dostaw, wykorzystywanego transportu, bilansu przepływu materiałów w procesach produkcyjnych, zużycia energii oraz scenariuszy wykorzystania powstających odpadów. [U F]

- **Wprowadzenie niezbędnych zmian w systemie statystyki publicznej** pozwalające na uzyskanie koniecznych danych do przeprowadzenia przez przedsiębiorstwa analiz cyklu życia najważniejszych grup produktów w Polsce, biorąc pod uwagę zarówno ich wolumen, wartość oraz potencjalny wpływ na redukcję emisji. Dodatkowo proponuje się wspierać współpracę pomiędzy urzędami statystycznymi, biznesem, ośrodkami naukowymi w zakresie wypracowania minimalnego katalogu danych koniecznych do wprowadzenia w Polsce systemowych rozwiązań pozwalających na dostarczenie konsumentom całościowych informacji dotyczących wpływu konsumpcji na emisyjność gospodarki. [L U]
10.2.4. Działanie E.2.4. Rozwój jednolitego systemu standardów oraz testów konsumenckich w zakresie oceny emisyjności produktów

W ramach niniejszego działania proponuje się:

- **Opracowanie i wdrożenie systemu testów konsumenckich dla wybranych kategorii produktów i usług**, które mogą mieć potencjalnie duży wpływ na poziom emisyjności polskiej gospodarki. Opracowanie jednolitego systemu oceny pozwoliłoby na dokonywanie oceny wybranych dóbr w oparciu o te same kryteria oraz monitorowanie rozwoju polskiej gospodarki, biorąc pod uwagę rynek dobr niskoemisyjnych. Dodatkowo testy konsumenckie pozwalałyby na stosowanie informacji porównawczych pomiędzy produktami i ocenianie kierunku zmian występujących na rynku. [UFL]

- **Wprowadzenie zachęt dla przedsiębiorców do wykonywania dobrowolnych testów konsumenckich** poprzez wprowadzanie specjalnych regulacji w zakresie prawa zamówień publicznych, ochrony środowiska, pomocy finansowej oraz prawa podatkowego. Stosowanie zaawansowanych testów konsumenckich w zakresie charakterystyki emisyjnej produktów wiąże się z poniesieniem znacznych nakładów finansowych. Wobec tego proponuje się, aby uzyskane wyniki testów uprawniały przedsiębiorstwa do odpowiednich zwolnień oraz ulg. [UFL]

10.3. Priorytet E.3 Promocja wzorców zrównoważonej konsumpcji w gospodarstwach domowych

Skala emisji badana w całym cyklu życia produktu powoduje, że potencjalnie możliwe jest dokonanie oceny, jaka emisja wiąże się z etapem powstawania produktu, a jaka z jego użytkowaniem. Na podstawie dostępnych analiz można oszacować potencjał redukcyjny tkwiący w przyzwyczajeniach konsumentów i decyzjach dokonywanych przez nich przy pólce sklepowej. Co więcej, dzięki dokładniejszym statystykom, potencjał ten można analizować w poszczególnych typach gospodarstw domowych czy grupach konsumentów.

Gospodarstwa domowe są odpowiedzialne za prawie 1/5 wszystkich emisji generowanych w Polsce. Najważniejsze z nich są skutkiem zużycia energii w mieszkaniach (ogrzewanie, ochładzanie, dostęp do ciepłej wody, oświetlenie), zużycia paliw w transporcie, zakupów produktów żywnościowych oraz postępowania z odpadami. Analizy wskazują, że podjęcie nawet elementarnych działań mających na celu racjonalizację wydatków i nawyków konsumenckich może prowadzić do znacznej redukcji emisji – w niektórych wypadkach nawet o 85%. Wobec tego w ramach niniejszego priorytetu proponuje się wdrożyć działania, które mają największe znaczenie dla redukcji emisji. Istotny potencjał występuje w zakresie oszczędności energii w mieszkaniach, przeciwdziałania marnotrawstwu żywności, zmiany nawyków związanych z transportem oraz promowania odpowiedniego postępowania z odpadami.
Zgodnie z danymi GUS w Polsce istnieje ponad 13,6 mln gospodarstw domowych, których przeciętny miesięczny dochód rozporządzalny na osobę w 2013 r. wynosił około 1300 zł. Oznacza to, że gospodarstwa domowe w Polsce dysponują kwotą wynoszącą około 600 mld złotych, z czego ponad 80% wykorzystanych jest na wydatki konsumpcyjne. Wartość ta będzie rosnąć wraz ze stopniowym rozwojem gospodarczym kraju. Zatem transformacja niskoemisyjna w gospodarstwach domowych nie prowadzi się tylko do możliwości istotnego zmniejszenia emisyjności generowanych przez konsumentów, ale może przyczynić się do istotnych zmian w polskiej gospodarce w sytuacji zmiany struktury konsumpcji oraz popularyzacji produktów niskoemisyjnych.

10.3.1. Działanie E.3.1. Zmiana prostych nawyków konsumentów w obrębie gospodarstwa domowego sprzyjająca oszczędności energii

W ramach niniejszego działania proponuje się:

- **Upowszechnianie zachowań łączących rozsądne gospodarowanie zasobami przy jednoczesnym odnoszeniu korzyści ekonomicznych** Na zmianę struktury konsumpcji, a tym samym na końcowe zużycie energii w gospodarstwach domowych istotny wpływ mają przyzwyczajenia mieszkańców. Uzależnione są one bezpośrednio od sposobu użytkowania mieszkań. Z dostępnych badań wynika, że zmiany prostych zachowań konsumentów mogą doprowadzić do znacznych oszczędności. Tylko optymalizacja (najczęściej obniżenie) temperatury pomieszczeń, zmiana zabudowy grzejników i uszczelnienie okien może prowadzić do zmniejszenia potrzeb związanych z ogrzewaniem mieszkań przynajmniej o 20-30%. Podjęcie dodatkowych działań związanych z modernizacją cieplną budynku, zmiany źródła ogrzewania prowadzi do kolejnej redukcji zużycia energii – nawet o kolejne 20-25%. Osiągnięcie zamierzonej skuteczności jest jednak konsekwencją nie tylko działań modernizacyjnych, ale również świadomości mieszkańców. W przypadku np. przegrzewania pomieszczeń, niewłaściwej ich wietrzenia, stosowania przestarzałych urządzeń AGD, nieracjonalnego wykorzystywania oświetlenia inne przedsięwzięcia modernizacyjne okazują się niewystarczające i w konsekwencji nie wpłyną pozytywnie na zmniejszenie redukcji. [U]

- **Upowszechnianie wiedzy na temat potencjału oszczędności energii wynikającej z podjęcia działań modernizacyjnych w budynkach** Budynki oraz ich użytkowanie jest jednym z głównych źródeł emisji gazów cieplarnianych w gospodarstwach domowych. Przyspieszenie działań modernizacyjnych budynków może doprowadzić do zmniejszenia potrzeb energetycznych gospodarki. Podjęcie decyzji w tym zakresie wymaga jednak niezbędnej wiedzy dotyczącej sposobów przeprowadzenia odpowiednich działań. Wobec tego proponuje się upowszechniać wiedzę na temat racjonalnych pod względem ekonomicznym i środowiskowym sposobów modernizacji budynków (głównie jednorodzinnych). Do proponowanych działań zaliczyć należy również rozwój i popularyzację dobrowolnych,

48 Ludność Polski ~ 38,2 mln osób x 1300 zł x 12 miesięcy

Projekt z dnia 4 sierpnia 2015 roku
Zachęcanie gospodarstw domowych oraz producentów energii eklektycznej do stosowania inteligentnych liczników. Obecnie urządzenia takie umożliwiają dostarczanie bieżących informacji dotyczących zużycia energii, stosowanych taryf, pojawiających się awarii, jakości energii elektrycznej oraz ciągłości dostawy. Proponuje się stosowanie systemów, dzięki którym istniałaby możliwość ciągłego monitoringu zużycia energii w gospodarstwie domowym, biorąc pod uwagę źródła zapotrzebowania, dostosowanie struktury wykorzystania energii do taryf oferowanych przez zakłady energetyczne oraz ocenę zasadności zastosowania alternatywnych źródeł dostarczenia energii do gospodarstwa domowego (np. z OZE). Zastosowanie nowoczesnych liczników energii powinno pozwalać na ocenę sposobu konsumowania energii przez gospodarstwo domowe (np. godzin najwyższej konsumpcji, źródeł konsumpcji energii elektrycznej), dostarczając konsumentowi informacji na temat profilu wykorzystania energii w jego gospodarstwie domowym oraz propozycji optymalizacji jej zużycia w przyszłości. Rozwiązania takie powinny być na tyle tanie, aby zyski związane z pojawiającymi się oszczędnościami oraz zmianą profilu konsumpcji energii w gospodarstwie domowym przewyższają koszt zastosowania takiego rozwiązania oraz koszt jego użytkowania. [U]

10.3.2. Działanie E.3.2. Promocja zrównoważonego gospodarowania odpadami w gospodarstwie domowym

W ramach niniejszego działania proponuje się:

- Wprowadzenie zachęt dla gospodarstw domowych minimalizujących wytwarzanie odpadów. Polska należy do krajów o jednym z najniższych poziomów wytwarzania odpadów komunalnych w przeliczeniu na osobę. Niemniej jednak wraz ze wzrostem zamożności oczekuje się, że ten stan rzeczy może ulec istotnej zmianie. W związku z tym konieczne jest wprowadzenie zachęt, dzięki którym gospodarstwa domowe nie będą produkować większej ilości odpadów nawet w sytuacji zwiększającego się poziomu konsumpcji. Stan ten można osiągnąć dzięki m.in. zmianie struktury konsumpcji, popularyzacji produktów zawierających opakowania minimalizujące ilość powstających odpadów, kupno produktów umożliwiających wymianę poszczególnych podzespołów (zamiast całego produktu). Do proponowanych zachęt zaliczyć można przede wszystkim obniżenie podatków preferencyjnych stawek podatkowych (obniżka ich cen), upowszechnianie metod zapobiegania powstaniu odpadów wśród konsumentów oraz popularyzację użytkowania opakowań wielokrotne użytku tam, gdzie jest to możliwe. [U L F]

- Edukowanie konsumentów na temat wpływu odpowiednich opakowań na poziom emisji wynikający z konsumpcji najpopularniejszych produktów. Opakowania są odpowiedzialne za 5% całkowitego zużycia energii do produkcji. Całkowite ich wyeliminowanie nie jest możliwe, ale wskazane jest zastosowanie tych, które nadają się do odzysku i tym samym wywierają mniejszy wpływ na środowisko. Wobec tego pożądane jest dostarczanie konsumentom odpowiedniej wiedzy w tym zakresie. [U]
• Podejmowanie akcji uświadamiających szkodliwość nieprawidłowego postępowania z odpadami. Spalanie odpadów w domowych instalacjach grzewczych, wyrzucanie odpadów na tzw. dzikie wysypiska, nieodpowiednie postępowanie z odpadami niebezpiecznymi prowadzi nie tylko do groźnego dla zdrowia i życia zanieczyszczenia podstawowych systemów środowiska, ale również utraty ważnych dla gospodarki zasobów. Znaczna część z odpadów komunalnych jest możliwa do ponownego wykorzystania czy recyklingu. Wobec tego proponowane jest kontynuowanie dalszych akcji informacyjnych na temat systemu zbiórki odpadów w Polsce, w tym intensyfikacja informacji na temat istotności selektywnej zbiórki odpadów komunalnych u źródła. Szacuje się, że upowszechnienie selektywnej zbiórki odpadów może odpowiadać za redukcję nawet 20 mln ton emisji gazów cieplarnianych – niemniej jednak wynik ten nie będzie osiągalny bez czynnego udziału konsumentów. [U]

10.3.3. Działanie E.3.3. Przeciwdziałanie marnotrawstwu żywności

Zgodnie z międzynarodowymi szacunkami w Polsce marnuje się ponad 9 mln ton żywności rocznie. Proces ten występuje na wszystkich etapach – produkcji, dystrybucji oraz konsumpcji. Straty żywności na etapie konsumpcji wynikają najczęściej z trudności w określeniu zapotrzebowania, błędnej planowania zakupów i posiłków oraz nieumiejętnego przechowywania. Wg danych GUS wydatki na produkty żywnościowe i napoje bezalkoholowe wciąż stanowią największy wydatek przeciętnych konsumenckich (w 2013 r. ¼ ogółu kosztów tj. około 260 zł na osobę miesięcznie). Biorąc pod uwagę, że produkcja jednej tony żywności łączy się z emisją dwutlenku węgla na poziomie około 5 ton – redukcja marnotrawstwa żywności tylko o 10% prowadzi do zmniejszenia poziomu emisji o około 20 mln ton oraz oszczędności dla gospodarstw domowych na poziomie około 1 mld złotych rocznie. Działania podejmowane w tym kierunku sprzymierzą także ograniczeniu emisji ścieków i gazów powstających w procesie składowania odpadów, tym samym zmniejszając zanieczyszczenie wód substancjami organicznych oraz powietrza m.in. metanem. Wobec tego proponuje się:

• Upowszechnianie wśród konsumentów wiedzy na temat przeciwdziałania marnowaniu żywności poprzez zastosowanie m.in. zasad tj. planowania zakupów z wyprzedzeniem; przetwarzania żywności w celu wydłużenia jej trwałości; przechowywania produktów w odpowiednich warunkach; podzielenia się zbędną żywnością z potrzebującymi. Pożądane jest upowszechnienie działań prowadzących do segregacji odpadów – w tym oddzielnego, selektywnego zbierania biomasy, dzięki czemu możliwe będzie zagospodarowanie niewykorzystanego pożywienia w celach gospodarczych. W związku z tym proponuje się prowadzić systematyczne akcje edukacyjne mające na celu zwiększenie wśród konsumentów oraz przedstawicieli branży spożywczą świadomości na temat marnotrawstwa żywności w Polsce. [U]

• Promowanie przyjaznych środowiskowo opakowań żywności przyczyniających się do transformacji niskoemisyjnej. Szacuje się, że opakowanie produktów żywnościowych może odpowiadać nawet za ponad ¼ całkowitej emisji związanej z produkcją żywności. Wobec tego proponuje się podjęcie działań mających na celu promocję opakowań wielokrotnego użycia przy jednoczesnym zagwarantowaniu ich parametrów dotyczących bezpieczeństwa żywności oraz długości jej przechowywania. Działanie to będzie prowadzić zarówno do zmniejszenia
marnotrawstwa żywności, jak i zmniejszenia negatywnego wpływu opakowań na środowisko. [U]

- **Wdrożenie mechanizmów dystrybucji oraz odpowiedniego postępowania z produktami o kończącym się terminie przydatności do spożycia** oraz wprowadzenie możliwości przedłużenia terminu przydatności do spożycia w określonych wypadkach pod warunkiem zachowania wszystkich koniecznych norm zapewniających bezpieczeństwo żywności. Wiele zebranych produktów (np. przez organizacje charytatywne) nie może zostać przekazane potrzebującym ze względu na restrykcyjne przepisy dotyczące terminów przydatności produktów do spożycia – prowadzi to w pewnych warunkach do marnowania pełnowartościowej żywności, która mogłaby zostać spożytowana i przekazana potrzebującym. [U L]

- **Przeprowadzanie okresowych badań dotyczących skali, struktury oraz kierunków procesów związanych z marnotrawstwem żywności w Polsce.** Mimo dokonywanych szacunków przez różnorodne organizacje (zarówno publiczne, jak i prywatne) wciąż nie ma pełnej wiedzy o przyczynach i skali marnotrawstwa żywności w Polsce. Wobec tego postuluje się wprowadzenie do statystyki publicznej okresowych badań opartych na jednolitej metodyce, dzięki którym możliwe będzie monitorowanie tego zjawiska w Polsce. [L]

10.3.4. **Działanie E.3.4. Kształtowanie zachowań społecznych w dziedzinie zrównoważonego transportu**

W ramach działania proponuje się:

- **Wprowadzenie zachęt dla gospodarstw domowych do korzystania z transportu publicznego.** Inwestycje infrastrukturalne dokonywane w zakresie transportu publicznego przyniosą odpowiedni efekt tylko w przypadku zbudowania odpowiedniej oferty dla konsumentów. Wobec tego transport publiczny musi być przede wszystkim konkurencyjny pod względem cenowym wobec indywidualnych środków transportu oraz zapewniać wysoki poziom komfortu. Wobec tego proponuje się tworzenie taryf przewozowych, które będą zachęcać pasażerów do systematycznego korzystania z usług transportu publicznego zarówno w połączeniach lokalnych, jak również regionalnych i ogólnopolskich. Należy wprowadzić także rozwiązania systemowe, dzięki którym przejazd transportem kolejowym (przynajmniej
Pomijając większością polskich miast) będzie tańszy od korzystania z samochodu. Dodatkowo konieczne jest lepsze dopasowanie oferty transportowej do potrzeb pasażerów oraz skomunikowanie różnych form transportu publicznego – tak, aby stanowił wygodny sposób przemieszczania do pracy, szkoły lub w celach rekreacyjnych. Do postulowanych zachęt zaliczyć można również stosowanie jednego biletu dla członków całej rodziny (również tych miesięcznych i kwartalnych) oraz możliwość odliczania pewnej kwoty wydatków na transport publiczny od dochodu. [U F]

- Poprawa efektywności eksploatacji pojazdów poprzez popularyzację ekonomicznego stylu jazdy. Styl jazdy ma istotny wpływ na zużycie paliwa i emisję zanieczyszczeń. Upowszechnienie ekologicznego stylu jazdy (ekojazdy) może nastąpić w wyniku zmiany dotychczasowych nawyków kierowców, którzy już wiele lat temu uzyskali prawo jazdy. W związku z tym proponuję się prowadzić akcje promocyjne, podczas których przedstawiane będą korzyści wynikające z oszczędnego prowadzenia aut. Upowszechnienie ekonomicznego i ekologicznego stylu jazdy może nastąpić również w wyniku zmian legislacyjnych, które określiłyby obowiązkowy zakres szkolenia kierowców, jak również ich egzaminowania. Szacuje się, że odpowiednie prowadzenie pojazdów może prowadzić do redukcji zużycia paliwa od 5 do nawet 20%, co jest równoznaczne z redukcją kilku milionów ton emisji rocznie, a także ze znacznymi oszczędnościami w budżetach gospodarstw domowych. [U L]

10.4. Priorytet E.4 Promocja transformacji niskoemisyjnej w sektorze publicznym

Sektor publiczny, w tym administracja publiczna, może pełnić szczególną rolę w zakresie prowadzenia transformacji niskoemisyjnej nie tylko w ramach dostosowywania oraz egzekwowania prawa, ale również dając przykład praktycznych działań prowadzących do racjonalnego wykorzystywania zasobów. Szczególne miejsce w tym obszarze zajmuje zarządzanie energią w urzędach, dostosowanie budynków do wysokich standardów energetycznych oraz umiejętnie stosowanie prawa zamówień publicznych w taki sposób, aby promować rozwój nowoczesnych i niskoemisyjnych produktów i usług.

Zgodnie z danymi UZP (Urząd Zamówień Publicznych) wartość rynku zamówień publicznych w Polsce w ostatnich 5 latach wahała się od około 120 do 160 mld złotych rocznie, co stanowi około 8-10% polskiego PKB i około 1,5% wartości rynku zamówień publicznych w całej UE. W polskim systemie prawnym stosowanie kryteriów zielonych zamówień publicznych nie jest obowiązkowe. Zgodnie z danymi UZP w 2006 r. tylko 4% zamawiających stosowało kryteria uwzględniające elementy środowiskowe produktów i usług. W 2012 r. rynek zielonych zamówień publicznych wzrósł do około 16 mld złotych, co stanowi około 12% wszystkich zamówień publicznych. Najczęściej obejmowały one działania związane z termomodernizacją budynków, przebudową sieci wodno-kanalizacyjnej, czy wymianą sprzętu komputerowego oraz sprzętu medycznego.

Dodatkowo wśród działań związanych z sektorem publicznym wydzielono przedsięwzięcia związane z gospodarowaniem przestrzenią. Zarządzanie przestrzenią ma bezpośredni wpływ na poziom emisyjności gospodarki oraz w znacznym stopniu związane jest z istniejącym systemem planowania. Rola administracji publicznej jako aktora odpowiedzialnego za kształtowanie ładu
przestrzennego była dotychczas niedoceniana w dyskursie dotyczącym transformacji niskoemisyjnej. Wobec tego w ramach Programu zaproponowane zostaną rozwiązania, dzięki którym ten niekorzystny stan rzeczy zostanie zmieniony.

Proponuje się, aby dzięki działaniom podjętym w ramach niniejszego priorytetu administracja publiczna stanowiła wzór w zakresie podejmowania działań mających na celu przeprowadzenie transformacji niskoemisyjnej – przedsięwzięć opłacalnych i uzasadnionych ekonomicznie, przyczyniających się do rozwoju polskiej gospodarki przy jednoczesnym zmniejszaniu obciążeń środowiskowych oraz poziomu szkodliwych emisji.

10.4.1. Działanie E.4.1. Promocja oszczędności energii w sektorze publicznym

W ramach działania proponuje się:

- **Prowadzenie działań promocyjnych wśród pracowników administracji na temat możliwości oszczędzania energii.** Szacuje się, że w administracji publicznej oraz sektorze publicznym (urzędnicy, służby mundurowe, sektor edukacji, wymiar sprawiedliwości, sektor ochrony zdrowia itp.) zatrudnionych było w 2012 r. ponad 3 mln osób. Stworzenie odpowiednich nawyków wśród tak szerokiej rzeszy pracowników prowadzić może zarówno do zmniejszenia zużycia energii przez sektor publiczny (np. poprzez zmniejszenie przegrzewania pomieszczeń, wyłączanie zbędnych urządzeń elektronicznych, kiedy nie są wykorzystywane) jak również pomoże budować odpowiedzialne zachowania konsumenckie wśród pracowników sektora publicznego w ich prywatnym życiu, a tym samym odpowiednie wzorce zachowań w ich najbliższym otoczeniu. W związku z tym proponuje się wprowadzić zagadnienia dotyczące oszczędności energii oraz odpowiedniego postępowania z odpadami w ramach szkoleń BHP, służby przygotowawczej oraz systemu podnoszenia kompetencji przez pracowników. [U]

- **Wdrożenie w większych urzędach administracji publicznej systemów zarządzania środowiskowego.** Zarządzanie energią oraz efektywność jej wykorzystania jest zależna od harmonijnego współdziałania podstawowych podsystemów – instalacji elektrycznej, ogrzewania, stanu technicznego budynku, ilości i jakości wykorzystywanego sprzętu, zachowania i nawyków pracowników. Wobec tego postuluje się upowszechnianie zarządzania urządami uwzględniającego normy środowiskowe, dzięki którym możliwe będzie zmniejszenie zużycia energii oraz odpowiednie postępowanie z odpadami dzięki wprowadzeniu odpowiednich procedur zgodnych np. z systemem EMAS lub standardem ISO. [U F L]

- **Upowszechnienie niskoemisyjnej floty samochodowej w urzędach.** Potrzeby transportowe niektórych instytucji prowadzą do intensywnego wykorzystania posiadanej przez nie floty samochodowej. Wobec tego pożądane jest upowszechnienie niskoemisyjnych aut (hybrydowych, elektrycznych lub zasilanych biopaliwem) w sektorze publicznym pod warunkiem, że intensywność użytkowania takiej floty usprawiedliwia ponoszenie większego kosztu ich zakupu (rekompensowanego na etapie użytkowania niższymi kosztami utrzymania). [U F]
Pełnienie przez budynki administracji publicznej wzorcowej roli w zakresie racjonalnego wykorzystywania energii. Zgodnie z wymogami prawa budynki administracji publicznej będą musiały spełniać coraz wyższe normy w zakresie efektywności wykorzystania energii. Wobec tego proponuje się wdrażać i upowszechniać najlepsze praktyki w zakresie racjonalnego wykorzystywania energii, dzięki czemu proces dostosowywania budynków do obowiązujących norm będzie mógł być przykładem dla innych sektorów. Dodatkowo pożądane jest upowszechnianie praktycznych działań informujących osoby korzystające z budynków administracji publicznej o inicjatywach podejmowanych w zakresie oszczędnego wykorzystywania energii, np. poprzez stosowanie krótkich komunikatów dotyczących metod ograniczających zużycie energii w konkretnym budynku (np. nalepki informujących o stosowaniu energooszczędnego oświetlenia, przeciwdziałaniu przegrzewaniu pomieszczeń, automatycznemu wyłączaniu zbędnych urządzeń oraz oszczędnościach generowanych dzięki podjętym inicjatywom). [U]

10.4.2. Działanie E.4.2. Upowszechnienie zasad zielonych zamówień publicznych

W ramach działania proponuje się:

- Wprowadzenie do zielonych zamówień publicznych kryteriów obejmujących ocenę emisyjności produktów w całym cyklu życia. Obecnie głównym sposobem stosowania zielonych zamówień publicznych jest wykorzystanie kryteriów, które obejmują m.in. ocenę posiadania przez przedsiębiorstwa specjalnych certyfikatów poświadczających spełnienie specyficznych norm środowiskowych. Stosowanym kryterium może być również posiadanie odpowiedniego oznaczenia środowiskowego lub wdrożenie przez przedsiębiorstwo systemów zarządzania ekologicznego. Niemniej jednak dla przeważającej liczby produktów nie są dostępne szczegółowe kryteria dotyczące oceny produktów w całym cyklu życia. Taki stan rzeczy znacznie utrudnia zamawiającym możliwość zakupu produktów, które charakteryzują się najmniejszym poziomem emisyjności. Wobec tego proponuje się opracować wytyczne dotyczące sposobu oceny przez zamawiających cech związanych z emisyjnością produktu w całym cyklu życia. Dodatkowo postuluje się prowadzenie działań informacyjnych dla pracowników administracji publicznej w zakresie stosowania rachunku cyklu życia zgodnie z prawem zamówień publicznych. [U]

- Wprowadzenie możliwości preferowania oferentów, którzy są w stanie dostarczyć informacje na temat poziomu emisyjności swoich produktów. Proponuje się wprowadzenie możliwości preferowania oferentów (przy dużych zamówieniach publicznych) posiadających odpowiednie certyfikaty oraz systemy zarządzania w zakresie zrównoważonej produkcji, systemów zarządzania środowiskowego jak również tych oferentów, którzy są w stanie przedstawić informacje na temat poziomu emisyjności oferowanych przez siebie produktów w całym cyklu życia. Preferencje te mogą polegać np. na przyznaniu dodatkowej liczby punktów w zależności od poziomu oszczędności możliwych do osiągnięcia przy zakupie energooszczędnych produktów, redukcji emisji lub zmniejszenia ilości produkowanych odpadów zgodnie z ogólnie przyjętymi zasadami. [L]
- Wprowadzenie minimalnych (wyższych niż dla ogółu gospodarki) norm, którymi muszą charakteryzować się produkty i usługi kupowane przez administrację publiczną, biorąc pod uwagę ich efektywność energetyczną, zapobieganie powstawaniu odpadów oraz poziom emisyjności. Proponuje się, aby zamówienia publiczne przyczyniały się do rozwoju rynku produktów niskoemisyjnych – wobec tego konieczne jest wprowadzenie wysokich standardów minimalnych dla produktów nabywanych przez sektor publiczny w taki sposób, aby tworzyć popyt na produkty o wysokiej jakości – oznaczające się niższym poziomem emisji w całym cyklu życia oraz niższymi kosztami na etapie eksploatacji. [L]

10.4.3. Działanie E.4.3. Uwzględnienie potrzeb transformacji niskoemisyjnej w gospodarce leśnej oraz zarządzaniu obszarami zieleni miejskiej

W ramach niniejszego działania proponuje się:

- Systematyczne zwiększanie powierzchni lasów w Polsce. Powierzchnia lasów w Polsce wynosi około 9,1 mln ha, co odpowiada lesistości na poziomie 29,2%. Biorąc pod uwagę zdolność lasów do absorpcji dwutlenku węgla, z punktu widzenia rozwoju gospodarki niskoemisyjnej proponuje się prowadzenie działań mających na celu zwiększenie powierzchni leśnej w skutek zalesiania gruntów dotychczas użytkowanych rolniczo, stanowiących nieużytki oraz w wyniku sukcesji naturalnej. Rekomenduje się ponadto uwzględnianie w dokumentach aktualizacyjnych Krajowy Program Zwiększania Lesistości zagadnień związanych ze zdolnością lasów do absorpcji emisji generowanych przez gospodarkę. [U L]

- Wykorzystanie obszarów zieleni miejskiej w ramach transformacji niskoemisyjnej. Jedną z funkcji obszarów zieleni miejskiej jest pochłanianie lub odprowadzanie substancji emitowanych w obszarach funkcjonalnych – zjawisko to jest szczególnie istotne na silnie uprzemysłowionych i zurbanizowanych obszarach miejskich. Zieleń miejska pozytywnie wpływa na jakość powietrza, w tym na zmniejszenie jego zapylenia oraz hałasu, jak również na mikroklimat danego obszaru. Ponadto pochłaniania dwutlenek węgla i produkuję tlen. Tereny zielni miejskiej pozytywnie wpływają na rozwój miast dzięki potencjalnemu wzrostowi atrakcyjności danych obszarów ze względów osadniczych. Biorąc pod uwagę zarówno gospodarcze, jak również środowiskowe i społeczne funkcje obszarów zieleni miejskiej proponuje się uwzględnienie w planowaniu miast oraz obszarów przemysłowych odpowiedniego zagospodarowania terenów w kontekście tworzenia stref zieleni miejskiej oraz upowszechnienia gatunków roślin pochłaniających najniebezpieczniejsze zanieczyszczenia (pod warunkiem zachowania równowagi biologicznej danego terenu, naturalnej różnorodności występujących roślin oraz nierozpowszechniania gatunków inwazyjnych). [U F L]
10.4.4. Działanie E.4.4. Przegląd prawa zagospodarowania przestrzennego pod kątem potrzeb niskoemisyjnej gospodarki

W ramach niniejszego działania proponuje się:

- Dokonywanie okresowych przeglądów planów oraz prawa zagospodarowania przestrzennego pod kątem wpływu istniejących rozwiązań na poziom emisyjności gospodarki. Instrumenty planowania przestrzennego wpływają na funkcjonowanie gospodarki. Użycie odpowiednich narzędzi planistycznych oraz kreowanie ładu przestrzennego prowadzi do oszczędnego wykorzystywania zasobów m.in. dzięki braniu pod uwagę kosztów związanych z doprowadzeniem i utrzymaniem odpowiedniej infrastruktury przy kształtowaniu układów osadniczych i tkanki urbanistycznej. Odpowiednie planowanie przestrzenne może prowadzić do redukcji kosztów związanych z transportem zarówno towarów, jak również pasażerów poprzez zapobieganie „rozlewaniu się miast” oraz suburbanizacji. Niemniej jednak dane GUS wskazują na niepokojące tendencje związane z wyludnianiem się miast oraz rozrostem przedmieść, co będzie miało negatywny wpływ na transformację niskoemisyjną Polski. Wobec tego proponuje się dokonanie przeglądu prawa zagospodarowania przestrzennego w celu identyfikacji narzędzi i rozwiązań umożliwiających odwrócenie tego niekorzystnego procesu. Dodatkowo zaleca się wprowadzenie kryteriów oceny wojewódzkich i gminnych planów zagospodarowania przestrzennego pod kątem wpływu proponowanych rozwiązań na poziom emisyjności analizowanego obszaru.
III
WDRAŻANIE, MONITORING I FINANSOWANIE NPRGN
11. **Opis systemu wdrażania**

11.1. **Instytucje zaangażowane we wdrażanie programu**

Realizacja NPRGN powinna przyczynić się do skutecznej transformacji niskoemisyjnej, tj. przestawienia gospodarki na mniej emisyjną i wykorzystującą zasoby w sposób zrównoważony, ale jednocześnie konkurencyjną i innowacyjną w skali zarówno europejskiej jak i globalnej oraz przyjazną społeczeństwu. Tak zdefiniowany zakres transformacji wskazuje podmioty, które będą odgrywały kluczową rolę we wdrażaniu Programu. Organem odpowiedzialnym za koordynowanie i wdrażanie NPRGN jest Minister właściwy ds. gospodarki. Niemniej jednak z uwagi na horyzontalny zakres działań uzyskanie przewidywanych skutków jest uzależnione od aktywnej roli Ministrów właściwych ds. środowiska; transportu; rolnictwa i rozwoju wsi; budownictwa, lokalnego planowania i zagospodarowania przestrzennego oraz architektury; Skarbu Państwa, wychowania i oświaty, nauki oraz szkolnictwa wyższego.

Ponadto w realizację włączone będą instytucje podlegające ww. organom, tj. przede wszystkim Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej, Polska Agencja Rozwoju Przedsiębiorczości oraz Narodowe Centrum Badań i Rozwoju.

Dodatkowo wskazane jest uczestnictwo w realizacji programu organów administracji samorządowej. Tak duża liczba podmiotów włączonych w monitorowanie i realizację Programu oznacza, iż osiągnięcie każdego celu będzie w dużej mierze uwarunkowane efektywną współpracą pomiędzy ww. instytucjami. Dlatego też kluczowym elementem jest stworzenie infrastruktury instytucjonalnej pozwalającej na sprawną koordynację i realizację polityki na rzecz transformacji niskoemisyjnej.

Wyniki analiz organizacji międzynarodowych (np. OECD) wskazują na fundamentalną rolę stworzenia odpowiedniego systemu koordynacji polityki w obszarze zrównoważonego rozwoju. W związku z tym ustanowiony zostanie Zespół ds. transformacji niskoemisyjnej, który będzie kontynuował prace powołanego w 2012 r. Zespołu doradczego ds. Narodowego Programu Rozwoju Gospodarki Niskoemisyjnej. Do zadań Zespołu należeć będzie z jednej strony ocena postępu wdrażania Programu, a z drugiej koordynacja bieżącej polityki niskoemisyjnej w Polsce.

W okresie do 2020 r. zdecydowana większość narzędzi o charakterze finansowym, które stymulować będą transformację niskoemisyjną jest zawartych w programach operacyjnych współfinansowanych ze środków europejskich. Po roku 2020 istotna część działań finansowana będzie z krajowych środków, w tym z przychodów ze sprzedaży uprawnień do emisji gazów cieplarnianych (w ramach aukcji ETS).

Ustalenie szczegółowych narzędzi wdrażania Programu w perspektywie lat 2020-2030 zostanie określone przez Zespół ds. transformacji niskoemisyjnej na podstawie przeglądu nie później niż w 2020 roku. Kolejne przeglądy na podstawie, których następować będzie weryfikacja działań Programu są przewidywane w zależności od istniejących potrzeb, jednak nie rzadziej niż raz na 5 lat. Podstawą przeglądu będą wyniki ewaluacji wdrażania Programu.

Bieżący monitoring realizacji celów NPRGN będzie prowadzony na podstawie przyjętych wskaźników przez Ministra właściwego ds. gospodarki.
11.2. Ramy finansowe

NPRGN identyfikuje działania, które z jednej strony prowadzą do zwiększania konkurencyjności gospodarki, z drugiej przyczyniają się do zmniejszania jej emisyjności. W założeniach są to przedsięwzięcia, które powinny być opłacalne pod względem ekonomicznym. Wobec tego istotna ich część będzie realizowana przez sektor prywatny. Wsparcie sektora publicznego polegać będzie na m.in. na wskazaniu preferowanych z punktu widzenia państwa inwestycji oraz pomocy w uruchomieniu wybranych działań w początkowej fazie ich funkcjonowania.

Zatem łączna kwota przeznaczona na transformację niskoemisyjną ze środków publicznych (zgodnie z definiowaniem stosowanym w programowaniu środków europejskich) do 2020 roku przekracza 46 mld złotych i dotyczy zarówno projektów inwestycyjnych, jak również działań miękkich związanych ze zmianami wzorców zachowań. Biorąc pod uwagę, że zakres definiowania przedsięwzięć niskoemisyjnych w NPRGN jest szerszy niż w środkach europejskich - łączna kwota środków dostępnych w ww. obszarze przekracza 60 mld złotych.

Szacowane koszty transformacji niskoemisyjnej

Zgodnie z przyjętym modelem koszty transformacji niskoemisyjnej są uzależnione od analizowanej branży. Zgodnie z wynikami modelowania będzie on nierówno rozłożony pomiędzy poszczególne dekady z kulminacją przypadającą na lata 2020-2040,

Do najkosztowniejszych działań zaliczyć należy modernizację i rozbudowę polskiej energetyki – koszt obliczony za pomocą modelu WISE (obejmujący również działania w ramach Polityki Energetycznej Polski) wynosi około 710 mld złotych (średnioroczne nakłady modernizacyjne sięgają około 20 mld złotych tj. 5 mld euro rocznie w okresie od 2020 do 2040 roku). Koszty transformacji niskoemisyjnej dotyczyć będą zarówno sektora prywatnego jak również publicznego. Do największych wydatków o charakterze prywatnym należy zaliczyć modernizację floty samochodowej. Łączny koszt zmian przekracza 1 200 mld złotych w cenach stałych z 2010 roku, co odpowiada około 1-1,5% wartości PKB wygenerowanego przez Polskę w latach 2015-2050. Około połowy kosztów poniosą gospodarstwa domowe z tytułu zakupu mniej emisyjnych samochodów osobowych. Reszta przypadnie na firmy nabywające zarówno samochody osobowe jak i dostawcze.

Szacunkowe dane dotyczące najważniejszych źródeł oraz wysokość wsparcia na przedsięwzięcia zidentyfikowane w ramach NPRGN zawiera poniższa tabela.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cel szczegółowy A: Niskoemisyjne Wytwarzanie Energii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Modernizacja infrastruktury krajowego systemu elektroenergetycznego</td>
<td>5 300</td>
<td>POIiŚ 2014-2020 oraz Programy priorytetowe NFOŚiGW</td>
</tr>
<tr>
<td>A.2</td>
<td>Rozwój wykorzystania OZE</td>
<td>1 900</td>
<td></td>
</tr>
<tr>
<td>A.3</td>
<td>Upowszechnienie alternatywnych (innych niż odnawialne) metod pozyskiwania energii</td>
<td>1 800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cel szczegółowy B: Poprawa efektywności gospodarowania surowcami i materiałami, w tym odpadami</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1</td>
<td>Promocja optymalnego wykorzystywania surowców</td>
<td>1 100</td>
<td>Program Priorytetowy NFOŚiGW: „Geologia i górnictwo”</td>
</tr>
<tr>
<td>B.2</td>
<td>Rozwój niskoemisyjnej gospodarki odpadami</td>
<td>3 600</td>
<td>Program Priorytetowy NFOŚiGW: „Racjonalna gospodarka odpadami”</td>
</tr>
<tr>
<td></td>
<td>Cel szczegółowy C: Rozwój zrównoważonej produkcji (przemysł, budownictwo, rolnictwo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1</td>
<td>Tworzenie sprzyjających warunków dla rozwoju niskoemisyjnej gospodarki w sektorze przemysłu</td>
<td>600</td>
<td>PO IiŚ 2014-2020</td>
</tr>
<tr>
<td>C.2</td>
<td>Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.3</td>
<td>Poprawa standardu energetycznego istniejących budynków</td>
<td>2 200</td>
<td>PO IiŚ 2014-2020</td>
</tr>
<tr>
<td>C.4</td>
<td>Poprawa standardu energetycznego nowobudowanych budynków</td>
<td></td>
<td>Program priorytetowe NFOŚiGW</td>
</tr>
<tr>
<td>C.5</td>
<td>Rozwój zrównoważonej produkcji w rolnictwie</td>
<td>8 000</td>
<td>PROW 2014-2020</td>
</tr>
<tr>
<td></td>
<td>Cel szczegółowy D: Transformacja niskoemisyjna w dystrybucji i mobilności</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1</td>
<td>Zwiększenie efektywności wybranych elementów łańcucha logistycznego</td>
<td>5 500</td>
<td>PO IiŚ 2014-2020</td>
</tr>
<tr>
<td>D.2</td>
<td>Transformacja niskoemisyjna w sektorze handlu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.3</td>
<td>Modernizacja pojazdów oraz infrastruktury w celu upowszechnienia niskoemisyjnych form transportu</td>
<td>29 200</td>
<td>PO IiŚ 2014-2020</td>
</tr>
</tbody>
</table>

49 Szacunkowa wartość dostępnego wsparcia w zaokrągleniu do pełnych 100 mln złotych. W przypadku przeliczania € na PLN zastosowano przybliżony kurs 1 €~ 4 PLN.
D.4 Poprawa efektywności zarządzania transportem oraz wspieranie rozwoju transportu publicznego

<table>
<thead>
<tr>
<th>Praca końcowa</th>
<th>Budżet w milionach zł</th>
<th>Termin</th>
<th>Cost Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.5 Rozwój i zastosowanie niskoemisyjnych paliw w transporcie oraz magazynowania energii w środkach transportu.</td>
<td>4 000</td>
<td>Po 11/8 2014-2020</td>
<td></td>
</tr>
</tbody>
</table>

Cel szczegółowy E: Promocja wzorców równoważonej konsumpcji

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>Opis</th>
<th>Wartość</th>
<th>Program Priorytetowy NFOŚiGW dotyczące edukacji ekologicznej.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1</td>
<td>Promocja wzorców równoważonej konsumpcji w edukacji</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>E.2</td>
<td>Wsparcie dostępności oraz wiarygodności informacji na temat wpływu konsumpcji poszczególnych produktów i usług na emisyjność gospodarki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3</td>
<td>Promocja wzorców równoważonej konsumpcji w gospodarstwach domowych</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.4</td>
<td>Promocja transformacji niskoemisyjnej w administracji publicznej</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.3. Wskaźniki

- W przypadku, gdy wartość docelowa odnosi się do innego roku niż 2020 – jest to oznaczone symbolem [*] oraz wskazaniem roku docelowego.
- Wartości bazowe dla wskaźników obejmują lata 2011-2014 w zależności od dostępności danych.
- Wskaźniki realizacji poszczególnych celów szczegółowych zostały przyporządkowane do poszczególnych priorytetów. Šą to tzw. wskaźniki efektu/oddziaływania – odnoszące się do wpływu realizacji Programu na ogólną sytuację w danym obszarze.
- Wskaźniki przypisane do poszczególnych działań są najczęściej wskaźnikami produktu.
- Źródłem danych dla większości wskaźników jest statystyka publiczna lub system agregacji danych wykorzystywanych w monitoringu wdrażania środków pomocowych UE w perspektywie finansowej 2014-2020. Dodatkowe dane (dotyczące przede wszystkim...
zrównoważonej konsumpcji opierają się na wynikach badania świadomości i zachowań ekologicznych mieszkańców Polski prowadzonych przez Ministerstwo Środowiska). Pozostałe informacje będą agregowane na bieżąco na podstawie ankiet kierowanych do poszczególnych resortów w trakcie bieżącego monitoringu.

- Występujące w tabeli skróty dotyczące podmiotów odpowiedzialnych za zbieranie danych oznaczają:
 - MAiC (ministra właściwego ds. informatyzacji);
 - MEN (ministra właściwego ds. oświaty i wychowania);
 - MF (ministra właściwego ds. finansów publicznych);
 - MG (ministra właściwego ds. gospodarki);
 - MIRb (ministra właściwego ds. budownictwa, lokalnego planowania i zagospodarowanie przestrzennego oraz mieszkalnictwa);
 - MIRr (ministra właściwego ds. rozwoju regionalnego);
 - MIRt (ministra właściwego ds. transportu);
 - MNiSW (ministra właściwego ds. szkolnictwa wyższego);
 - MŚ (ministra właściwego ds. środowiska);
 - MIRRW (ministra właściwego ds. rolnictwa);
 - UZP (Urząd Zamówień Publicznych).

Pozostałe skróty użyte w tabeli zostały objaśnione w pierwszej części dokumentu – wykaz skrótów.
Narodowy Program Rozwoju Gospodarki Niskoemisyjnej

<table>
<thead>
<tr>
<th>Nazwa priorytetu</th>
<th>Wskaźnik</th>
<th>Miara</th>
<th>Wartość bazowa i docelowa</th>
<th>Podmiot</th>
<th>Nazwa działania</th>
<th>Wskaźnik</th>
<th>Miara</th>
<th>Wartość bazowa i docelowa</th>
<th>Podmiot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modernizacja infrastruktury krajowego systemu elektroenergetycznego</td>
<td>Straty na przesyle i dystrybucji energii</td>
<td>Procentowo wyrażone straty w sieciach przesyłowych i dystrybucyjnych</td>
<td>Wartość bazowa: 7,1%</td>
<td>MG</td>
<td>Modernizacja i rozbudowa krajowego systemu elektroenergetycznego dopasowanego do wymagań rozwijającego się rynku OZE</td>
<td>Opracowanie analiz możliwości szerzego wykorzystania w polskich warunkach metody dynamicznej obciążalności linii (DOL)</td>
<td>Liczba analiz</td>
<td>Wartość bazowa 0</td>
<td>Wartość docelowa 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wartość docelowa 6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wartość bazowa 80%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modernizacja i rozbudowa krajowego systemu elektroenergetycznego przyczyniająca się do ograniczenia strat przesyłowych</td>
<td>Wyposażenie gospodarstw domowych w liczniiki zdalnego odczytu</td>
<td>Udział liczników zdalnego odczytu w licznikach w gospodarstwach ogółem</td>
<td></td>
<td>Wartość obecna: brak danych</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rozwój wysokosprawnej poligeneracji i kogeneracji</td>
<td>Udział energii elektrycznej wytwarzanej w kogeneracji</td>
<td>Wyrażony w proc. udział energii elektrycznej wytworzonej w kogeneracji w całkowitej wytworzonej energii elektrycznej brutto</td>
<td></td>
<td>Wartość bazowa: 15,8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wsparcie dla budowy kotłowni</td>
<td>Instnienie systemu wsparcia dla kotłowni</td>
<td>Wartość bazowa 1</td>
</tr>
<tr>
<td>Rozwój wykorzystania OZE</td>
<td>Stopień penetracji systemu energetycznego przez źródła odnawialne</td>
<td>Udzaj OZE w końcowym zużyciu energii brutto</td>
<td>Wartość bazowa: 11,9%</td>
<td>MG</td>
<td>Rozwój energetyki prosumenckiej</td>
<td>Udzaj energii wytworzonej przez prosumentów w miksie energetycznym</td>
<td>Wyrażony w proc. udział energii elektrycznej wytworzonej przez prosumentów w całkowitej wytworzonej energii elektrycznej brutto</td>
<td></td>
<td>Wartość bazowa: < 0,5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wartość docelowa: powyżej 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rozwój biogazowni</td>
<td>Wytwarzanie energii elektrycznej z biogazu</td>
<td>Ilość energii elektrycznej pozyskana z biogazu wyrażona w GWh</td>
<td></td>
<td></td>
<td></td>
<td>Wartość bazowa: 689,7</td>
<td>Wartość docelowa: > 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rozwój energetyki wiatrowej na polskich obszarach morskich</td>
<td>Przeprowadzenie analizy w zakresie możliwości przyłączenia morskich farm wiatrowych do sieci</td>
<td>Liczba analiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zrównoważone wykorzystanie biomasy</td>
<td>Przygotowanie projektu regulacji zakazującego współpalania biomasy innej niż odpadowa lub</td>
<td>Liczba regulacji</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Cel szczegółowy A: Niskoemisyjne Wytwarzanie Energii

- **Modernizacja infrastruktury krajowego systemu energetycznego**
 - Straty na przesyłej i dystrybucji energii
 - Procentowo wyrażone straty w sieciach przesyłowych i dystrybucyjnych
 - Wartość bazowa: 7,1%
 - Wartość docelowa: 6%

- **Modernizacja i rozbudowa krajowego systemu elektroenergetycznego**
 - Opracowanie analiz możliwości szerzego wykorzystania w polskich warunkach metody dynamicznej obciążalności linii (DOL)
 - Udział liczników zdalnego odczytu w licznikach w gospodarstwach ogółem
 - Wartość obecna: brak danych
 - Wartość docelowa: 80%

- **Rozwój wysokosprawnej poligeneracji i kogeneracji**
 - Udzielenie energii elektrycznej wytwarzanej w kogeneracji
 - Wyrażony w proc. udział energii elektrycznej wytworzonej w kogeneracji w całkowitej wytworzonej energii elektrycznej brutto
 - Wartość bazowa: 15,8%
 - Wartość docelowa: powyżej 18%

- **Wsparcie dla budowy kotłowni**
 - Liczba analiz
 - Wartość bazowa: 1
 - Wartość docelowa: 0

- **Rozwój energetyki prosumenckiej**
 - Udzielenie energii wytworzonej przez prosumentów w miksie energetycznym
 - Wyrażony w proc. udział energii elektrycznej wytworzonej przez prosumentów w całkowitej wytworzonej energii elektrycznej brutto
 - Wartość bazowa: < 0,5%
 - Wartość docelowa: > 2%

- **Rozwój biogazowni**
 - Wytwarzanie energii elektrycznej z biogazu
 - Ilość energii elektrycznej pozyskana z biogazu wyrażona w GWh
 - Wartość bazowa: 689,7
 - Wartość docelowa: > 2000

- **Rozwój energetyki wiatrowej na polskich obszarach morskich**
 - Przeprowadzenie analizy w zakresie możliwości przyłączenia morskich farm wiatrowych do sieci
 - Liczba analiz
 - Wartość bazowa: 0
 - Wartość docelowa: 1

- **Zrównoważone wykorzystanie biomasy**
 - Przygotowanie projektu regulacji zakazującego współpalania biomasy innej niż odpadowa lub
 - Liczba regulacji
 - Wartość bazowa: 0
 - Wartość docelowa: 1

Notyfikacje

8 Podmiot odpowiedzialny za pozyskanie danych. W przypadku wskazania kilku podmiotów: pierwszy z nich jest odpowiedzialny za koordynację pozyskiwania danych.

9 Jak wyżej.
NARODOWY PROGRAM ROZWOJU GOSPODARKI NiskoEMISyJNEJ

<table>
<thead>
<tr>
<th>Cel szczegółowy B: Poprawa efektywności gospodarowania surowcami i materiałami, w tym odpadami</th>
<th>Wysokość założeń (szacunki zagażenia)</th>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
<th>Liczba analiz</th>
<th>Wartość bazowa: 0</th>
<th>Wartość docelowa: 1</th>
<th>Wartość bazowa: 23%</th>
<th>Wartość docelowa: 35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upowszechnienie alternatywnych (innych niż odnawialne) metod pozyskiwania energii</td>
<td>Wartość bazowa: 8,3</td>
<td>Wartość docelowa: 20</td>
<td>Udział odpadów komunalnych w wytwarzaniu energii elektrycznej w Polsce</td>
<td>Stosunek produktu krajowego brutto (PKB) per capita (wzrostu gospodarczego) do krajowego zużycia materiałów (DMC)</td>
<td>MŚ</td>
<td>MG</td>
<td>MŚ</td>
<td>MG</td>
</tr>
<tr>
<td>Upowszechnienie wykorzystania pomp ciepła i gruntowych wymienników ciepła do celów grzewczych</td>
<td>Stopień zagospodarowania metanu</td>
<td>Wartość bazowa: 1,05</td>
<td>Wartość docelowa: 1,5</td>
<td>Dokonalenie technologii pozyskiwania oraz wstępnej obróbki surowców</td>
<td>MŚ</td>
<td>MG</td>
<td>MŚ</td>
<td>MG</td>
</tr>
<tr>
<td>Upowszechnienie spalania i współspalania odpadów</td>
<td>Przeprowadzenie kampanii w celu popularyzacji rozwiązań umożliwiających odkrycie ciepła w rolnictwie</td>
<td>Wartość bazowa: 1,05</td>
<td>Wartość docelowa: 1,5</td>
<td>Opracowanie rekomendacji dotyczących poprawy poziomu zagospodarowania surowców dzięki zmniejszeniu ilości surowca głównego traconego na etapie wstępnej obróbki oraz celem uzyskania szerzej płyty surowców towarzyszących w rudzie surowcowej głównemu, a traconych w szczególności na etapie separacji rud</td>
<td>MŚ</td>
<td>MG</td>
<td>MŚ</td>
<td>MG</td>
</tr>
<tr>
<td>Zwiększenie stopnia wykorzystania paliw alternatywnych</td>
<td>Analiza potencjału wykorzystania ciepła odpadowego w przemyśle</td>
<td>Wartość bazowa: 0</td>
<td>Wartość docelowa: 1</td>
<td>Opracowanie rekomendacji dotyczących poprawy poziomu zagospodarowania surowców dzięki zmniejszeniu ilości surowca głównego traconego na etapie wstępnej obróbki oraz celem uzyskania szerzej płyty surowców towarzyszących w rudzie surowcowej głównemu, a traconych w szczególności na etapie separacji rud</td>
<td>MŚ</td>
<td>MG</td>
<td>MŚ</td>
<td>MG</td>
</tr>
</tbody>
</table>

Wzrost wykorzystania metanu

Przeprowadzenie kampanii upowszechniającej wiedzę o korzyściach i negatywnych skutkach budowy spalarni wśród społeczności lokalnych

Liczba kampanii

Wartość bazowa: 0; Wartość docelowa: 1

MG

Upowszechnienie spalania i współspalania odpadów

Przeprowadzenie kampanii upowszechniającej wiedzę o korzyściach i negatywnych skutkach budowy spalarni wśród społeczności lokalnych

Liczba kampanii

Wartość bazowa: 0; Wartość docelowa: 1

MŚ

Wzrost wykorzystania metanu

Stopień zagospodarowania metanu

Procentowy udział metanu wydzielonego w trakcie eksploatacji węgla, który podlega zagospodarowaniu

Wartość bazowa: 23%; Wartość docelowa: 35%

MG

Elektryfikowanie gospodarowania ciepłem odpadowym

Przeprowadzenie kampanii w celu popularyzacji rozwiązań umożliwiających odkrycie ciepła w rolnictwie

Liczba kampanii

Wartość bazowa: 0; Wartość docelowa: 1

MRiRW

Zwiększenie stopnia wykorzystania paliw alternatywnych

Analiza potencjału wykorzystania ciepła odpadowego w przemyśle

Liczba analiz

Wartość bazowa: 0; Wartość docelowa: 1

MG
<table>
<thead>
<tr>
<th>Rozwój niskoemisyjnej gospodarki odpadami</th>
<th>Zbiórka selektywna odpadów komunalnych</th>
<th>Wartość bazowa: 1275,2</th>
<th>MŚ</th>
<th>Poprawa efektywności wykorzystywania surowców</th>
<th>Wartość docelowa: 8000</th>
<th>MG</th>
<th>Liczba uruchomionych agentów badawczych</th>
<th>(\text{Liczba uruchomionych agentów badawczych})</th>
<th>Wartość bazowa: 0</th>
<th>Wartość docelowa: 1</th>
<th>MNiSW</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozyskanie i uruchomienie przez NCBiR agendy badawczej w obszarze substytucji surowców nieenergetycznych istotnych dla polskiej gospodarki</td>
<td>Poziom recyklingu odpadów szklanych</td>
<td>tys. ton</td>
<td>Wartość bazowa: 862</td>
<td>Wartość docelowa: 1200</td>
<td>MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poziom recyklingu odpadów zużytego sprzętu elektrycznego i elektronicznego</td>
<td>Poziom recyklingu odpadów zużytego sprzętu elektrycznego i elektronicznego</td>
<td>tys. ton</td>
<td>Wartość bazowa: 129,7</td>
<td>Wartość docelowa: zgodnie z ustawą o zużytym sprzęcie elektrycznym i elektronicznym</td>
<td>MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cel szczegółowy C: Rozwój zrównoważonej produkcji (przemysł, budownictwo, rolnictwo)

| Rozwój niskoemisyjnych produktów | Dostęp MŚP do darmowego narzędzia pozwalającego na samodzielne wykonanie uproszczonej analizy LCA dla wybranych produktów | Wartość bazowa: 0 | Wartość docelowa: 1 | MG/MŚ |

| Rozwój kadr dla gospodarki niskoemisyjnej | Popularyzacja kierunków studiów priorytetowych ze względu na realizację celów NPRGN | Odsetek studentów kierunków studiów w zakresie nauk ścisłych, technicznych, przyrodniczych | Wartość docelowa: 30% | MNiSW | MEN |

| Poprawa standardu energetycznego istniejących budynków | Zużycie energii końcowej w modernizowanych budynkach jednorodzinnych i wielorodzinnych | kWh/m²/rok | Kontynuacja procesu termomodernizacji na nowych zasadach | Wartość docelowa: 70 domy jednorodzinne | Wartość docelowa: 80 | MIRb |

| Wartość obecna: brak danych | Emisje procesowe wyłączenie procesu spalania paliw | Mln ton ekwiwalentu CO₂ | Liczba zmienionych regulacji | Wartość docelowa: 0; Wartość docelowa: 1 | MIRb |

Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych

| Emisjność sektora przemysłu | Emisjność sektora przemysłu na unii dobnę CO₂ (kt CO₂/1000 EUR) | MŚ | Dostęp do darmowego narzędzia pozwalającego na samodzielne wykonanie uproszczonej analizy LCA dla wybranych produktów | Wartość docelowa: 8000 | MG |

| Emisjność sektora cementowego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 55,5 | Wartość docelowa: 56,2 | MŚ |

| Emisjność sektora chemicznego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 5266 | Wartość docelowa: 5400 | MŚ |

| Emisjność sektora hutniczego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 2285 | Wartość docelowa: 2689 | MŚ |

| Zmniejszenie emisyjności sektora cementowego | Wartość bazowa: 6007 | Wartość docelowa: 8625 | Wartość docelowa: 8625 | Wartość docelowa: 8625 | MŚ |

| Zmniejszenie emisyjności sektora chemicznego | Wartość bazowa: 5206 | Wartość docelowa: 5400 | Wartość docelowa: 5400 | Wartość docelowa: 5400 | MŚ |

| Zmniejszenie emisyjności sektora hutniczego | Wartość bazowa: 2285 | Wartość docelowa: 2689 | Wartość docelowa: 2689 | Wartość docelowa: 2689 | MŚ |

| Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych | Emisyjność sektora cementowego (kt CO₂/1000 EUR) | MŚ | Dostęp do darmowego narzędzia pozwalającego na samodzielne wykonanie uproszczonej analizy LCA dla wybranych produktów | Wartość docelowa: 8000 | MG |

| Emisyjność sektora cementowego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 55,5 | Wartość docelowa: 56,2 | MŚ |

| Emisyjność sektora chemicznego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 5266 | Wartość docelowa: 5400 | MŚ |

| Emisyjność sektora hutniczego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 2285 | Wartość docelowa: 2689 | MŚ |

| Zmniejszenie emisyjności sektora cementowego | Wartość bazowa: 6007 | Wartość docelowa: 8625 | Wartość docelowa: 8625 | Wartość docelowa: 8625 | MŚ |

| Zmniejszenie emisyjności sektora chemicznego | Wartość bazowa: 5206 | Wartość docelowa: 5400 | Wartość docelowa: 5400 | Wartości docelowa: 5400 | MŚ |

| Zmniejszenie emisyjności sektora hutniczego | Wartość bazowa: 2285 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | MŚ |

| Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych | Emisyjność sektora cementowego (kt CO₂/1000 EUR) | MŚ | Dostęp do darmowego narzędzia pozwalającego na samodzielne wykonanie uproszczonej analizy LCA dla wybranych produktów | Wartość docelowa: 8000 | MG |

| Emisyjność sektora cementowego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 55,5 | Wartość docelowa: 56,2 | MŚ |

| Emisyjność sektora chemicznego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 5266 | Wartość docelowa: 5400 | MŚ |

| Emisyjność sektora hutniczego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 2285 | Wartości docelowa: 2689 | MŚ |

| Zmniejszenie emisyjności sektora chemicznego | Wartość bazowa: 5206 | Wartości docelowa: 5400 | Wartości docelowa: 5400 | Wartości docelowa: 5400 | MŚ |

| Zmniejszenie emisyjności sektora hutniczego | Wartość bazowa: 2285 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | MŚ |

| Rozpowszechnienie istniejących technologii niskoemisyjnych w procesach produkcyjnych | Emisyjność sektora cementowego (kt CO₂/1000 EUR) | MŚ | Dostęp do darmowego narzędzia pozwalającego na samodzielne wykonanie uproszczonej analizy LCA dla wybranych produktów | Wartość docelowa: 8000 | MG |

| Emisyjność sektora cementowego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 55,5 | Wartość docelowa: 56,2 | MŚ |

| Emisyjność sektora chemicznego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartość docelowa: 5266 | Wartości docelowa: 5400 | MŚ |

| Emisyjność sektora hutniczego | Emisje procesowe (wyłączenie procesu spalania paliw) | Mln ton ekwiwalentu CO₂ | Wartości docelowa: 2285 | Wartości docelowa: 2689 | MŚ |

| Zmniejszenie emisyjności sektora chemicznego | Wartość bazowa: 5206 | Wartości docelowa: 5400 | Wartości docelowa: 5400 | Wartości docelowa: 5400 | MŚ |

| Zmniejszenie emisyjności sektora hutniczego | Wartość bazowa: 2285 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | Wartości docelowa: 2689 | MŚ |
Narodowy Program Rozwoju Gospodarki Niskoemisyjnej

<table>
<thead>
<tr>
<th>Poprawa standardu energetycznego nowobudowanych budynków</th>
<th>Oznaczenie * oznacza rok docelowy 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zużycie energii końcowej w nowobudowanych budynkach jednorodzinnych i wielorodzinnych kWh/m²/rok</td>
<td>MIRb</td>
</tr>
<tr>
<td>Wartość obecna: 110 domy jednorodzinne 95 domy wielorodzinne</td>
<td></td>
</tr>
<tr>
<td>Wartość docelowa: 55 domy jednorodzinne 50 domy wielorodzinne</td>
<td></td>
</tr>
<tr>
<td>Poprawa warunków horyzontalnych dla rozwoju budynków o niskim zużyciu energii</td>
<td></td>
</tr>
<tr>
<td>Ustanowienie certyfikatu poświadczającego posiadanie wiedzy z zakresu niskoenergetycznych budynków przez architektów oraz kierowników budowy</td>
<td></td>
</tr>
<tr>
<td>Wprowadzenie certyfikatów poświadczających przedmiotowe kompetencje</td>
<td></td>
</tr>
<tr>
<td>Przegląd warunków technicznych stawianych nowym budynkom</td>
<td></td>
</tr>
<tr>
<td>Analiza w 2018 r. a następnie, co 5 lat ustanowionych 1 stycznia 2014 r. standardów energetycznych dla nowobudowanych budynków, pod kątem efektywności kosztowej przyjętych rozwiązań</td>
<td></td>
</tr>
<tr>
<td>Liczba analiz</td>
<td>Wartość bazowa: 0; Wartość docelowa: 0</td>
</tr>
<tr>
<td></td>
<td>Wartość bazowa: 1; Wartość docelowa: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rozwój zrównoważonej produkcji w rolnictwie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisje metanu oraz podtlenku azotu z rolnictwa mln ton ekwiwalentu CO2</td>
<td>MIRb/W</td>
</tr>
<tr>
<td>Wartość bazowa: 33,2 domy</td>
<td>MŚ</td>
</tr>
<tr>
<td>Wartość docelowa 30 domy</td>
<td></td>
</tr>
<tr>
<td>Zrównoważone zarządzanie gospodarstwem rolnym</td>
<td>Powierzchnia gospodarstw ekologicznych</td>
</tr>
<tr>
<td>Udział gospodarstw ekologicznych w całych gruntów wykorzystywanych na uprawy (tzw. UAA).</td>
<td>Wartość bazowa: 4,6%; Wartość docelowa: 7%</td>
</tr>
<tr>
<td>Wdrożenie nowoczesnych metod chowu zwierząt</td>
<td>Liczba opracowanych rekomendacji</td>
</tr>
<tr>
<td>Opracowanie rekomendacji dotyczących stosowania właściwie zbilansowanych dawek pokarmowych dla zwierząt</td>
<td>Wartość bazowa: 0; Wartość docelowa: 1</td>
</tr>
<tr>
<td>Wdrażanie nowoczesnych metod upraw</td>
<td>Wykorzystanie nawozów sztucznych</td>
</tr>
<tr>
<td>Zużycie nawozów azotowych i fosforowych – dane w kg nawozów na 1 ha upraw (tzw. UAA).</td>
<td>Wartość bazowa: N (azot): 73; P (fosfor): 11</td>
</tr>
<tr>
<td>Wdrożenie regulacji prawno-finansowych wpływających na integrację poszczególnych gałęzi transportu towarowego.</td>
<td>Przegląd warunków technicznych stawianych nowym budynkom</td>
</tr>
<tr>
<td>Liczba opracowanych rekomendacji</td>
<td>Wartość bazowa: 0; Wartość docelowa: 1;</td>
</tr>
<tr>
<td></td>
<td>MG</td>
</tr>
</tbody>
</table>

| Cel szczegółowy D: Transformacja niskoemisyjna w dystrybucji i mobilności |
|--|--|
| Zwiększenie efektywności wybranych elementów łańcucha logistycznego | |
| Praca przerzutowa w transporcie intermodalnym mln tkm/rocznie | MIRt |
| Wartość bazowa: 3087 domy | |
| Wartość docelowa: 5700 mln tkm/rocznie | |
| Wprowadzenie regulacji prawno-finansowych wpływających na integrację poszczególnych gałęzi transportu towarowego. | |
| Przegląd warunków technicznych stawianych nowym budynkom | |
| Liczba opracowanych rekomendacji | Wartość bazowa: 0; Wartość docelowa: 1; |
| | MG |

<table>
<thead>
<tr>
<th>Opracowanie rekomendacji oraz zasad funkcjonowania jednostki</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Obiekt</td>
<td>Metryka</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Transformacja niskoemisyjna w sektorze handlu</td>
<td>Sprzedaż produktów ekologicznych</td>
</tr>
<tr>
<td>Rozwój transportu intermodalnego</td>
<td>Liczba terminali zbudowanych lub rozbudowanych zlokalizowanych w sieci TEN-T</td>
</tr>
<tr>
<td>Rozwój krótkich łańcuchów dostaw oraz rynków lokalnych</td>
<td>Liczba terminali opracowanych rekomendacji</td>
</tr>
<tr>
<td>Tworzenie warunków sprzyjających promocji produktów ekologicznych</td>
<td>Liczba zbudowanych terminali</td>
</tr>
<tr>
<td>Emisjność transportu</td>
<td>Emisyjność transportu</td>
</tr>
<tr>
<td>Modernizacja pojazdów oraz infrastruktury w celu upowszechnienia niskoemisyjnych form transportu</td>
<td>Emisyjność transportu</td>
</tr>
<tr>
<td>Praca przewozowa w kolejowym systemie pasażerskim</td>
<td>Emisyjność transportu</td>
</tr>
<tr>
<td>Modernizacja i rozwój niskoemisyjnej infrastruktury transportowej</td>
<td>Wartość docelowa dla 2023</td>
</tr>
<tr>
<td>Modernizacja i rozwój niskoemisyjnych środków transportu</td>
<td>Udział pojazdów niskoemisyjnych (elektrycznych, hybrydowych, zasilanych gazem CNG/LNG) wśród nowych aut po raz pierwszy rejestrzwanych w Polsce w danym roku</td>
</tr>
<tr>
<td>Modernizacja i rozwój niskoemisyjnych środków transportu</td>
<td>Udział samochodów osobowych, używanych, importowanych, po raz pierwszy rejestrzwanych w Polsce w danym roku w ogólnej liczbie samochodów osobowych po raz pierwszy rejestrzwanych w Polsce w danym roku</td>
</tr>
</tbody>
</table>
Poprawa efektywności zarządzania transportem oraz wspieranie rozwoju transportu publicznego

<table>
<thead>
<tr>
<th>Wielkość lub stopień</th>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniknięta emisja CO₂ w wyniku funkcjonowania transportu publicznego</td>
<td>1 150 408 ton CO₂ rocznie</td>
<td>MIRt</td>
</tr>
<tr>
<td>Rozwój niskoemisyjnych systemów zarządzania ruchem</td>
<td>MIRt</td>
<td>Długość linii kolejowych wyposażonych w system ERTMS</td>
</tr>
<tr>
<td>Rozwój niskoemisyjnego transportu publicznego (zarządzanie transportem)</td>
<td>MIR</td>
<td>Opracowanie i wdrożenie systemu wsparcia dla jest w zakresie budowania transportu publicznego na obszarach aglomeracji</td>
</tr>
</tbody>
</table>

Cel szczegółowy E: Promocja wzorców zrównoważonej konsumpcji

<table>
<thead>
<tr>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znajomość oznaczeń środowiskowych stosowanych na produktach</td>
<td>18%</td>
</tr>
<tr>
<td>Zmniejszenie liczby Polaków niezajmujących żadnego oznaczenia środowiskowego</td>
<td>15%</td>
</tr>
<tr>
<td>Gromadzenie przez sektor prywatny informacji na temat emisyjności produktów w całym cyklu życia</td>
<td>MG</td>
</tr>
</tbody>
</table>

Promocja wzorców zrównoważonej konsumpcji w edukacji

<table>
<thead>
<tr>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poziom świadomości społeczeństwa w obszarze zrównoważonego rozwoju</td>
<td>46%</td>
</tr>
<tr>
<td>Upowszechnianie zastosowania paliw metanowych, biopalni i biogazu</td>
<td>10%</td>
</tr>
<tr>
<td>Wprowadzenie preferencyjnej lub powróć do zerowej stawki podatku alcyjowego dla gazu ziemnego w postaci CNG do celów pekińnych</td>
<td>MIRt</td>
</tr>
<tr>
<td>Efektywne magazynowanie energii elektrycznej w pojazdach</td>
<td>MIRt</td>
</tr>
</tbody>
</table>

Promocja edukacji na odległość oraz wykorzystania Internetu w procesach edukacyjnych.

<table>
<thead>
<tr>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poziom kompetencji cyfrowych</td>
<td>45%</td>
</tr>
<tr>
<td>Odsetek respondentów, którzy w badaniu EUHOSTE dotyczące kompetencji cyfrowych zadeklarowali wykonywanie przynajmniej 5 wyznaczonych czynności związanych z wykorzystywaním Internetu</td>
<td>10%;</td>
</tr>
</tbody>
</table>

Wspieranie dostępności oraz wiarygodności informacji na temat wpływu konsumpcji poszczególnych produktów i usług na

<table>
<thead>
<tr>
<th>Wartość bazowa</th>
<th>Wartość docelowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Znajomość oznaczeń środowiskowych stosowanych na produktach</td>
<td>4%</td>
</tr>
<tr>
<td>Zmniejszenie liczby Polaków niezajmujących żadnego oznaczenia środowiskowego</td>
<td>15%</td>
</tr>
</tbody>
</table>
| Gromadzenie przez sektor prywatny informacji na temat emisyjności produktów w całym cyklu życia | **MG**

Projekt z dnia 4 sierpnia 2015 roku
<table>
<thead>
<tr>
<th>Emisjność gospodarki</th>
<th>Upowszechnienie metod oceny cyklu życia w komunikacji biznesowej oraz konsumencji.</th>
<th>Stworzenie platformy współpracy pomiędzy przedsiębiorcami, organizacjami poszczególnymi oraz ośrodkami analitycznymi (w tym naukowymi) w zakresie promocji wykorzystania ocen cyklu życia w środowisku biznesowym i komunikacji z konsumentami.</th>
<th>Funkcjonowanie platformy współpracy</th>
<th>Wartość bazowa: 0; Wartość docelowa: 1</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dostosowanie systemu sprawozdawczości oraz statystyki publicznej do potrzeb związanych z oceną emisyjności głównych grup produktów i usług w Polsce</td>
<td>Uruchomienie ogólnodostępnej bazy danych zawierającej informacje konieczne do przeprowadzenia uproszczonych analiz LCA dla wybranych grup produktów w Polsce.</td>
<td>Funkcjonowanie bazy danych</td>
<td>Wartość bazowa: 0; Wartość docelowa: 1</td>
<td>MG</td>
<td></td>
</tr>
<tr>
<td>Rozwój jednolitego systemu standardów oraz testów konsumenckich w zakresie oceny emisyjności produktów.</td>
<td>Opracowanie rekomendacji w zakresie testów konsumenckich oraz metod ich popularizacji wśród przedsiębiorców</td>
<td>Opracowanie rekomendacji</td>
<td>Wartość bazowa: 0; Wartość docelowa: 1</td>
<td>MG</td>
<td></td>
</tr>
<tr>
<td>Promocja wzorców zrównoważonej konsumpcji w gospodarstwach domowych</td>
<td>Segregacja odpadów w gospodarstwach domowych</td>
<td>Odsetek respondentów deklarujących segregowanie odpadów w gospodarstwie domowym</td>
<td>Wartość bazowa: 68%; Wartość docelowa: powyżej 75%</td>
<td>MŚ; MG</td>
<td></td>
</tr>
<tr>
<td>Promocja zrównoważonego gospodarowania odpadami w gospodarstwie domowym</td>
<td>Ilość wytwarzanych odpadów komunalnych na mieszkańca</td>
<td>kg/mieszkanie rok</td>
<td>Wartość bazowa: 293; Wartość docelowa: 280</td>
<td>MG</td>
<td></td>
</tr>
<tr>
<td>Przeciwdziałanie marnotrawstwu żywności</td>
<td>Marnotrawstwo żywności w gospodarstwach domowych</td>
<td>Odsetek respondentów deklarujących, że w ich gospodarstwach domowych występuje marnotrawstwo żywności</td>
<td>Wartość bazowa: 24%; Wartość docelowa: 20%</td>
<td>MG</td>
<td></td>
</tr>
<tr>
<td>Promocja transformacji niskoemisyjnej w administracji publicznej</td>
<td>Osiągnięcie oszczędności w zużyciu energii przez administrację publiczną</td>
<td>GWh/rok</td>
<td>Wartość bazowa: 0; Wartość docelowa 513</td>
<td>MAiC; MG</td>
<td></td>
</tr>
<tr>
<td>Promocja oszczędności energii w sektorze publicznym</td>
<td>Liczba budynków administacji publicznej pełniących rolę budynków wzorcowych w zakresie efektywności energetycznej.</td>
<td>Liczba budynków</td>
<td>Wartość bazowa: 0; Wartość: 100*</td>
<td>MAiC; MŚ; MG</td>
<td></td>
</tr>
<tr>
<td>Upowszechnienie zasad zielonych zamówień publicznych</td>
<td>Udział zielonych zamówień publicznych w Polsce</td>
<td>Odsetek zielonych zamówień publicznych mierzony w oparciu o badanie UZP</td>
<td>Wartość bazowa: 12%; Wartość docelowa: 30%</td>
<td>UZP</td>
<td></td>
</tr>
</tbody>
</table>

Projekt z dnia 4 sierpnia 2015 roku
| Uwzględnienie potrzeb transformacji niskoemisyjnej w gospodarce leśnej oraz zarządzaniu obszarami zieleni miejskiej. | Opracowanie rekomendacji w zakresie zarządzania obszarami zieleni miejskiej w celu poprawy atrakcyjności przestrzennej oraz zwiększania zdolności przestrzeni do absorpcji emisji | Liczba opracowanych rekomendacji | Wartość bazowa: 0; Wartość docelowa: 1 | MIRb | MŚ | MG |
|---|---|---|---|---|---|
| Przegląd prawa zagospodarowania przestrzennego pod kątem potrzeb niskoemisyjnej gospodarki | Dokonanie przeglądu prawa zagospodarowania przestrzennego oraz przedstawienie rekomendacji | Liczba opracowanych rekomendacji | Wartość bazowa: 0; Wartość docelowa: 1 | MIRb | | |
11.4. Symulacje makroekonomiczne efektów realizacji programu

Celem symulacji jest zaprezentowanie efektów wdrażania działań przedstawionych w NPRGN na wzrost gospodarczy, poziom zatrudnienia oraz emisyjność gospodarki. W ramach symulacji, w celu zwiększenia ich dokładności oraz eliminacji słabości każdego z nich, wykorzystano dwa modele – DSGE MEMO oraz DCGE PLANE. Szczegółowe informacje dotyczące modelowania oraz wyników zawarto w raporcie pn. „Symulacje makroekonomiczne efektów realizacji NPRGN do 2050 roku”, wykonanym przez Warszawski Instytut Studiów Ekonomicznych w 2014 roku przy finansowym wsparciu Banku Światowego.

Warto podkreślić, że wykorzystanie do modelowania dwóch modeli w sposób istotny zwiększa wiarygodność prezentowanych wyników. Model MEMO i PLANE różnią się między sobą sposobem reakcji na szoki, co zawsze jest tylko przybliżeniem, a nie wiernym zobrazowaniem przyszłości. Z tego powodu należy oczekiwać, że rzeczywisty wpływ analizowanych działań będzie zawierał się w przedziałach wyznaczonym przez wyniki symulacji przeprowadzonych z wykorzystaniem tych dwóch modeli.

Zgodnie z wynikami modelowania, realizacja NPRGN wpłynie pozytywnie na tempo wzrostu gospodarczego w średnim i długim okresie. Najważniejszym obszarem wpływającym dodatnio na poziom PKB i determinującym dodatnią dynamikę oddziaływania NPRGN na polską gospodarkę według obu modeli jest poprawa efektywności energetycznej w budynkach mieszkalnych i niemieszkalnych. Podobny efekt, chociaż na mniejszą skalę, ma upowszechnienie się paliwooszczędnych pojazdów, a także działania w przemyśle oraz gospodarce odpadami.

Natomiast zidentyfikowanym obciążeniem będą przede wszystkim inwestycje w sektorze energetycznym, które mogą doprowadzić w pierwszym okresie do niewielkiego spadku aktywności gospodarczej w pozostałych sektorach, co wynika z odpływu kapitału z reszty gospodarki do energetyki. Taki stan rzeczy wg modelu DSGE MEMO może prowadzić do nieznacznego zmniejszenia tempa wzrostu gospodarczego w pierwszym okresie realizacji Programu. Należy jednak podkreślić, że istotna część inwestycji jest konieczna do wykonania nie tylko z powodu transformacji niskoemisyjnej, ale również stanowi podstawę bezpieczeństwa energetycznego.

Obserwowany wpływ rolnictwa na PKB przypisany jest przede wszystkim stopniowej zmianie struktury gospodarki oraz zmniejszeniu udziału tego sektora w zatrudnieniu w perspektywie najbliższych dziesięcioleci. Wraz z szybkim wzrostem wydajności w pozostałych sektorach udział

53 Model MEMO – Macroeconomic Mitigation Options Model jest wielosektorowym makroekonomicznym modelem równowagi ogólnej typu DSGE (ang. dynamic stochastic general equilibrium). Oprócz zmiennych ekonomicznych takich jak PKB czy zatrudnienie uwzględnia on również wymiar energetyczny i środowiskowy: zużycie energii finałnej w procesach produkcyjnych, zużycie paliw i materiałów oraz emisje gazów cieplarnianych wynikające z działalności gospodarczej i konsumpcji gospodarstw domowych. Rozbudowana struktura sektorowa modelu pozwala dokładnie modelować zmiany gospodarcze zachodzące w ramach realizacji NPRGN, z uwzględnieniem wzajemnych pętli między poszczególnymi branżami i obszarami. Dynamiczny charakter modeli oddaje zdolność gospodarki do adaptacji do zmieniających się warunków zewnętrznych.

Model DCGE PLANE jest dynamicznym, wielosektorowym modelem równowagi ogólnej ze złożoną strukturą produkcji energii i reprezentacją sektora energetycznego. Wielosektorowy charakter modelu umożliwia zrozumienie zmian energii i przemysłu w obliczaniu wpływów. W modelu DCGE PLANE dynamicznym modelu można zrozumieć wpływ na zatrudnienie i inwestycje w sektorze energetycznym. W modelu DCGE PLANE dynamicznym modelu można zrozumieć wpływ na zatrudnienie i inwestycje w sektorze energetycznym.
rolnictwa w PKB będzie relatywnie spadał, choć branża ta nadal będzie pełniła ważną rolę w polskiej gospodarce.

Realizacja NPRGN jest zasadniczo neutralna dla rynku pracy w średnim i długim okresie. Przejściowy wpływ programu na zatrudnienie w obu modelach jest zgodny z wiedzą ekonomiczną, zgodnie, z którą każdy przyrost efektywności gospodarowania w długim okresie jest neutralny dla stopy zatrudnienia i bezrobocia przekładając się w całokształcie na poziom płac. Obserwowane różnice pomiędzy modelem PLANE a modelem MEMO we wpływie programu na poziom zatrudnienia w krótkim i średnim okresach wynikają z przynależności obu modeli do różnych klas modelowania. W obu wypadkach zmiany zatrudnienia są spójne z przewidywanymi przez dany model zmianami PKB.

Według modelu MEMO, wpływ NPRGN w na zatrudnienie w pierwszych latach wdrażania programu wynosi ok. -0,5% ogólnej liczby pracujących, co jest spowodowane początkową realokacją pracowników między sektorami. Wynika to przede wszystkim z konieczności podjęcia dodatkowego wysiłku inwestycyjnego w energetyce i budownictwie, który przejściowo zmniejsza pułk zasobów dostępną innym sektorom gospodarki, zmuszając je do ograniczenia popytu na pracę w okresie restrukturyzacyjnym. Efekt ten jest jednak przejściowy w ślad za tym jak poczynione oszczędności w wydatkach energetycznych i paliwowych uwalniają w gospodarce dodatkowe rezerwy wzrostu.

Rysunek 24 Wpływ realizacji NPRGN (scenariusz centralny) na PKB wg obszarów, odchylenie od BAU w % wg MODELU DSGE MEMO (po lewej) oraz DCGE PLANE (po prawej).

Realizacja NPRGN w zatrudnieniu

<table>
<thead>
<tr>
<th>Rok</th>
<th>A. Energetyka NPRGN</th>
<th>A. Energetyka inne</th>
<th>B. Odpady</th>
<th>C. Budownictwo</th>
<th>C. Rolnictwo</th>
<th>C. Przemysł</th>
<th>D. Transport</th>
<th>E. Wzorce konsumpcji</th>
<th>RAZEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>-0,5%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2020</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2025</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2030</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2035</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2040</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2045</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
<tr>
<td>2050</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
<td>-0,3%</td>
</tr>
</tbody>
</table>
Po początkowym dostosowaniu struktury zatrudnienia w modelu MEMO wpływ NPRGN staje się, neutralny, mieszając się między -0,2% do 0,2% odchylenia od liczby zatrudnionych w scenariuszu bazowym. Podobnie jak w przypadku PKB, dla sukcesu programu kluczowy jest obszar efektywności energetycznej w budynkach – im ambitniejsze podejmowane w nim działania, tym ma on większy pozytywny wpływ na zatrudnienie po okresie początkowego dostosowania. Pozostałe obszary mają relatywnie niewielki wpływ na zatrudnienie.

Łączna redukcja emisji gazów cieplarnianych w wyniku analizowanych działań wynosi w 2050 roku 149 MtCO₂ w porównaniu do scenariusza bazowego (BAU)\(^5\). Niemal połowa z tej liczby osiągana jest poprzez wzrost znaczenia niskoemisyjnego wytwarzania energii w energetyce. Ograniczenie zużycia energii w budynkach a także upowszechnienie paliwooszczędnych pojazdów również przyczynia się do istotnej redukcji emisji gazów cieplarnianych dzięki ograniczeniu bezpośrednich i pośrednich emisji CO₂ ze spalania paliw kopalnych. Do redukcji emisji przyczynia się również rozwój zrównoważonej produkcji w rolnictwie oraz przemysle, działania z obszaru zrównoważonej gospodarki odpadami oraz zmiany behawioralne.

\(^5\) W ramach modelowania uwzględniono następujące scenariusze:
- **BAU**: scenariusz odniesienia (bazowy) bez interwencji (business as usual)
- Scenariusz centralny: w całym analizowanym okresie 2010–2050 proces poprawy efektywności wykorzystania zasobów oraz spadku emisyjnich infrastruktury przeważa nad wzrostem aktywności gospodarczej, tym samym stopniowo obniżając całkowite emisje.
- Scenariusz niski i wysoki różnią się od scenariusza centralnego orientacją polityki publicznej (tak krajowej, jak europejskiej) na osiągnięcie celów redukcyjnych i zmniejszenie energochłonności i zasobochłonności gospodarki sensu largo i jej poszczególnych sektorów. Szczegóły w opracowaniu: Ocena stanu technicznego infrastruktury gospodarki przygotowanego w ramach prac przygotowawczych nad NPRGN.
Rysunek 26 Wpływ realizacji NPGRN na emisje gazów cieplarnianych wg obszarów, odchylenie od BAU w MtCO2e (oba modele).

Wdrożenie modelowanych działań przekłada się na redukcję emisji do 2050 roku o 44% w stosunku do roku 1990 oraz o 37% względem scenariusza BAU przy jednoczesnym ponad 2,5-krotnym wzroście PKB.

Rysunek 27 Redukcja emisji GHG w scenariuszu centralnym względem BAU oraz 1990 r. (oba modele)

Szczegółowe informacje dotyczące szacunkowej wielkości redukcji emisji w poszczególnych obszarach interwencji NPRG zawiera poniższa tabela. Dodatkowo, ze względu na istotność transformacji niskoemisyjnej w obszarze energetyki - tabela zawiera informacje dotyczące potencjału redukcji w energetyce w obszarach wykraczających poza bezpośrednią interwencję NPRGN, ale istotnych z punktu widzenia celów Programu. Dla oznaczenia redukcji wynikającej bezpośrednio z NPRGN posłużono się kategorią Energetyka NPRGN, natomiast efekt redukcyjny możliwy do uzyskania na skutek wdrożenia innych działań np. wynikających z Polityki Energetycznej Polski oznaczono kategorią Energetyka inne.
<table>
<thead>
<tr>
<th>Obszar interwencji NPRGN</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Energetyka NPRGN</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-11</td>
<td>-17</td>
<td>-21</td>
<td>-24</td>
<td>-27</td>
</tr>
<tr>
<td>A. Energetyka inne</td>
<td>0</td>
<td>-5</td>
<td>-11</td>
<td>-21</td>
<td>-30</td>
<td>-47</td>
<td>-47</td>
<td>-47</td>
<td>-46</td>
</tr>
<tr>
<td>B. Odpady</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>C. Budownictwo</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
<td>-10</td>
<td>-14</td>
<td>-18</td>
<td>-21</td>
<td>-23</td>
<td>-26</td>
</tr>
<tr>
<td>C. Rolnictwo</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>-6</td>
<td>-9</td>
<td>-12</td>
<td>-15</td>
<td>-18</td>
<td>-21</td>
</tr>
<tr>
<td>C. Przemysł</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
<td>-9</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>D. Transport</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-7</td>
<td>-9</td>
<td>-13</td>
<td>-16</td>
<td>-17</td>
<td>-17</td>
</tr>
<tr>
<td>E. Wzorce konsumpcji</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>RAZEM</td>
<td>0</td>
<td>-12</td>
<td>-29</td>
<td>-56</td>
<td>-83</td>
<td>-117</td>
<td>-133</td>
<td>-141</td>
<td>-149</td>
</tr>
</tbody>
</table>

Tabela 3 Wpływ realizacji NPRGN na emisje gazów cieplarnianych wg obszarów, odchylenie od BAU w MTCO₂e

Należy przy tym zaznaczyć, że niewielki wpływ zmiany wzorców konsumpcji na potencjał redukcyjny jest spowodowany niemożnością uwzględnienia wielu zjawisk oraz synergii w stosowanych modelach makroekonomicznych. Ocena się, że upowszechnienie odpowiednich wzorców konsumpcji może spowodować obniżenie emisyjności dla niektórych dóbr konsumpcyjnych od około 20 do nawet 80% oraz kontrбуować do globalnych redukcji wskazanych w pozostałych kategoriach interwencji,
IV
STRATEGICZNA OCENA ODDZIAŁYWANIA NA ŚRODOWISKO ORAZ EWALUACJA EX-ANTE
12. **Wyniki Strategicznej oceny oddziaływania na środowisko**

Do uzupełnienia po wykonaniu analizy.

13. **Wyniki ewaluacji ex-ante**

Do uzupełnienia po wykonaniu analizy.